A sensitive and reliable method for the quantitative determination of hydrogen peroxide produced by microalgae cells.

J Phycol

Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland.

Published: December 2024

One of the reactive forms of oxygen is hydrogen peroxide (HO), which has been investigated as a key component of growth processes and stress responses. Different methods for the determination of HO production by animal and bacterial cells exist; however, its detection in algal cell cultures is more complicated due to the presence of photosynthetic pigments in the cells and the complex structure of cell walls. Considering these issues, a reliable, quick, and simple method for HO detection is needed in phycological research. The aim of this methodological study was to optimize an Amplex UltraRed method for the fluorometric detection of HO produced by microalgae cells, using a wild-type strain of Chlamydomonas reinhardtii as a model. The results showed that (i) potassium phosphate is the most suitable reaction buffer for this method, (ii) a 560 nm wavelength variant is the most appropriate as the excitation wavelength for fluorescence spectra measurement, (iii) a 50:50 ratio for the reaction mixture to sample was the most suitable, (iv) the fluorescence signal was significantly influenced by the density of the microalgae biomass, and (v) sample fortification with HO allowed for an increase of the method's reliability and repeatability. The proposed protocol of the Amplex UltraRed method for the fluorometric detection of HO produced by microalgae cells can yield a sensitive and accurate determination of the content of the test compound, minimizing measurement errors, eliminating chlorophyll autofluorescence problem, and compensating for the matrix effect. This method can be applied to the study of other microalgae species.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jpy.13524DOI Listing

Publication Analysis

Top Keywords

produced microalgae
12
microalgae cells
12
hydrogen peroxide
8
amplex ultrared
8
ultrared method
8
method fluorometric
8
fluorometric detection
8
detection produced
8
method
6
microalgae
5

Similar Publications

Prevalence of lipophilic phycotoxins with different forms in the benthic environments of a typical mariculture bay.

Mar Environ Res

December 2024

Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.

Lipophilic phycotoxins (LPTs) are toxic and lipophilic secondary metabolites produced by toxic microalgae, which pose a serious threat to marine shellfish culture industries. LPTs were systematically investigated in bottom seawater, suspended particulate matter (SPM), sediment, and sediment porewater of Laizhou Bay, a typical mariculture bay in China, to understand the chemical diversity and environment behaviors of LPTs in the benthic environments. Okadaic acid (OA), pectenotoxin-2 (PTX2), dinophysistoxin-1 (DTX1), azaspiracid-2 (AZA2), gymnodimine (GYM), pectenotoxin-2 seco acid (PTX2 SA), 7-epi- pectenotoxin-2 seco acid (7-epi-PTX2 SA), 13-desmethylspirolide C (SPX1), yessotoxin (YTX) and homo YTX (h-YTX) were detected in the benthic environment of Laizhou Bay in spring, indicating that LPTs are rich in chemical diversity.

View Article and Find Full Text PDF

Ensuring everyone enjoys healthy lifestyles and well-being at all ages, Progress has been made in increasing access to clean water and sanitation facilities and reducing the spread of epidemics and diseases. The synthesis of nano-particles (NPs) by using microalgae is a new nanobiotechnology due to the use of the biomolecular (corona) of microalgae as a capping and reducing agent for NP creation. This investigation explores the capacity of a distinct indigenous microalgal strain to synthesize silver nano-particles (AgNPs), as well as its effectiveness against multi-drug resistant (MDR) bacteria and its ability to degrade Azo dye (Methyl Red) in wastewater.

View Article and Find Full Text PDF

The rapid growth of global energy demand accelerates the development of sustainable, clean, and renewable energy sources. Biohydrogen production, driven by functional microorganisms, offers a promising solution. Multiple species of bacteria, fungi, microalgae, and archaea were able to produce hydrogen.

View Article and Find Full Text PDF

The aim of the current investigation is to explore the novel application of pumpkin, papaya, and orange peels as growth substrates for microalgae cultivation, with the overarching goal of advancing a sustainable "Agro to Agro" biorefinery paradigm. The research evaluates the integration of waste management practices into microalgal production, optimizing growth parameters to maximize output. Optimal concentrations of 2.

View Article and Find Full Text PDF

The rational dietary ratio of docosahexaenoic acid (DHA) to eicosapentaenoic acid (EPA) can exert neurotrophic and cardiotrophic effects on the human body. The marine microalga produces EPA yet no DHA, and thus, it is considered an ideal EPA-only model to pursue a rational DHA/EPA ratio. In this study, synthetic biological strategy was applied to improve EPA production in .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!