Extracellular vesicles (EVs) are secreted by almost every cell type and are considered carriers of active biomolecules, such as nucleic acids, proteins, and lipids. Their content can be uptaken and released into the cytoplasm of recipient cells, thereby inducing gene reprogramming and phenotypic changes in the acceptor cells. Whether the effects of EVs on the physiology of recipient cells are mediated by individual biomolecules or the collective outcome of the total transferred EV content is still under debate. The EV RNA content consists of several types of RNA, such as messenger RNA (mRNA), microRNA (miRNA), and long non-coding RNA (lncRNA), the latter defined as transcripts longer than 200 nucleotides that do not code for proteins but have important established biological functions. This review aims to update our insights on the functional roles of EV and their cargo non-coding RNA during cancer progression, to highlight the utility of EV RNA as novel diagnostic or prognostic biomarkers in cancer, and to tackle the technological advances and limitations for EV RNA identification, integrity assessment, and preservation of its functionality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587107 | PMC |
http://dx.doi.org/10.3390/ncrna10060054 | DOI Listing |
Non-myeloablative hematopoietic cell transplantation (HCT) is a curative option for individuals with sickle cell disease (SCD). Our traditional goal with this approach has been to achieve a state of mixed donor/recipient chimerism. Recently, we reported an increased risk of hematologic malignancies (HMs) in adults with SCD following graft failure or mixed chimerism.
View Article and Find Full Text PDFHeliyon
January 2025
Pediatric Infectious Diseases Unit, Department of Pediatrics, Gregorio Marañón University Hospital, Madrid, Spain.
Objective: The aim of this prospective cohort study is to analyse the humoral and cellular vaccine responses in paediatric heart transplant recipients (HTR, n = 12), and compare it with the response in healthy controls (HC, n = 14). All participants were 5-18 years old and vaccinated with mRNA vaccine against SARS-CoV-2 between December 2021 and May 2022.
Methods: The humoral response was measured by quantifying antibody titers against SARS-CoV-2 spike protein (anti-S).
Antiviral Res
January 2025
Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China. Electronic address:
The Omicron BA.2.86 subvariants, JN.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan.
Background: Mycobacterium avium complex (MAC) is a common pathogen causing non-tuberculous mycobacterial infections, primarily affecting the lungs. Disseminated MAC disease occurs mainly in immunocompromised individuals, such as those with acquired immunodeficiency syndrome, hematological malignancies, or those positive for anti-interferon-γ antibodies. However, its occurrence in solid organ transplant recipients is uncommon.
View Article and Find Full Text PDFJ Infect Chemother
January 2025
Division of Infectious Diseases, Department of Pediatrics, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan; Division of Immunology, Department of Pediatrics, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan.
Cytomegalovirus (CMV) infection remains one of the most common and challenging post-transplant infections. Children with inborn errors of immunity (IEI) and T-cell dysfunction are at high risk for CMV infection, which can be complicated by refractory and/or resistant cases. This case describes a Nepalese girl with MHC class II deficiency, who presented at 3 months of age with CMV and Pneumocystis jirovecii pneumonia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!