Background: The impact of prolonged digital device exposure on physical and mental health in children has been widely investigated by the scientific community. Additionally, the lockdown periods due to the COVID-19 pandemic further exposed children to screen time for e-learning activities. The aim of this systematic review (PROSPERO Registration: CRD42022315596) was to evaluate the effect of digital device exposure on children's health. The impact of the COVID-19 pandemic was additionally explored to verify the further exposure of children due to the e-learning environment.

Methods: Available online databases (PubMed, Google Scholar, Semantic Scholar, BASE, Scopus, Web of Science, and SPORTDiscus) were searched for study selection. The PICO model was followed by including a target population of children aged 2 to 12 years, exposed or not to any type of digital devices, while evaluating changes in both physical and mental health outcomes. The quality assessment was conducted by using the Joanna Briggs Institute (JBI) Critical Appraisal Tool. Synthesis without meta-analysis (SWiM) guidelines were followed to provide data synthesis.

Results: Forty studies with a total sample of 75,540 children were included in this systematic review. The study design was mainly cross-sectional (n = 28) and of moderate quality (n = 33). Overall, the quality score was reduced due to recall, selection, and detection biases; blinding procedures influenced the quality score of controlled trials, and outcome validity reduced the quality score of cohort studies. Digital device exposure affected physical activity engagement and adiposity parameters; sleep and behavioral problems emerged in children overexposed to digital devices. Ocular conditions were also reported and associated with higher screen exposure. Home confinement during COVID-19 further increased digital device exposure with additional negative effects.

Conclusions: The prolonged use of digital devices has a significant negative impact on children aged 2 to 12, leading to decreased physical activity, sleep disturbances, behavioral issues, lower academic performance, socioemotional challenges, and eye strain, particularly following extended online learning during lockdowns.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587142PMC
http://dx.doi.org/10.3390/jfmk9040236DOI Listing

Publication Analysis

Top Keywords

digital devices
16
digital device
16
device exposure
16
quality score
12
children's health
8
prolonged digital
8
exposure physical
8
physical mental
8
mental health
8
covid-19 pandemic
8

Similar Publications

Mapping the landscape of Hospital at home (HaH) care: a validated taxonomy for HaH care model classification.

BMC Health Serv Res

January 2025

Institute Patient-Centered Digital Health, Bern University of Applied Sciences, Quellgasse 21, Biel, 2502, Switzerland.

Background: Hospital at home (HaH) care models have gained significant attention due to their potential to reduce healthcare costs, improve patient satisfaction, and lower readmission rates. However, the lack of a standardized classification system has hindered systematic evaluation and comparison of these models. Taxonomies serve as classification systems that simplify complexity and enhance understanding within a specific domain.

View Article and Find Full Text PDF

The first cervical vertebra (C1) is atypical in shape and bears a complex relationship with important neurovascular structures such as the vertebral artery and cervical spinal cord which are at risk of injury during misplaced screw fixation of C1. Placement of screws into the lateral mass of C1 vertebra is performed for stabilization of the craniovertebral junction. The objective of this study was to describe ideal screw dimensions, precise entry points, safe bony corridors, and ideal trajectories for placement of lateral mass screws in the Emirati population.

View Article and Find Full Text PDF

Feature enhanced cascading attention network for lightweight image super-resolution.

Sci Rep

January 2025

Zhongyu (Fujian) Digital Technology Co., Ltd, Fuzhou, 350108, China.

Attention mechanisms have been introduced to exploit deep-level information for image restoration by capturing feature dependencies. However, existing attention mechanisms often have limited perceptual capabilities and are incompatible with low-power devices due to computational resource constraints. Therefore, we propose a feature enhanced cascading attention network (FECAN) that introduces a novel feature enhanced cascading attention (FECA) mechanism, consisting of enhanced shuffle attention (ESA) and multi-scale large separable kernel attention (MLSKA).

View Article and Find Full Text PDF

A novel wearable device integrating ECG and PCG for cardiac health monitoring.

Microsyst Nanoeng

January 2025

Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, 030051, Taiyuan, China.

The alarming prevalence and mortality rates associated with cardiovascular diseases have emphasized the urgency for innovative detection solutions. Traditional methods, often costly, bulky, and prone to subjectivity, fall short of meeting the need for daily monitoring. Digital and portable wearable monitoring devices have emerged as a promising research frontier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!