A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification and cognitive function prediction of Alzheimer's disease based on multivariate pattern analysis of hippocampal volumes. | LitMetric

Background: Alzheimer's disease (AD) is strongly associated with slowly progressive hippocampal atrophy. Elucidating the relationships between local morphometric changes and disease status for early diagnosis could be aided by machine learning algorithms trained on neuroimaging datasets.

Objective: This study intended to propose machine learning models for the accurate identification and cognitive function prediction across the AD severity spectrum based on structural magnetic resonance imaging (sMRI) of the bilateral hippocampi.

Methods: The high-resolution sMRI data of 120 AD dementia patients, 232 amnestic mild cognitive impairment (aMCI) patients, and 206 healthy controls (HCs) were included from the Alzheimer's Disease Neuroimaging Initiative (ADNI). The classification capacity and cognitive predict ability of hippocampal volume was evaluated by multiple pattern analysis using the support vector machine (SVM) and relevance vector regression (RVR) application of the Pattern Recognition for Neuroimaging Toolbox, separately. For validation, the analyses were performed using a biomarker-based regrouping method and another independent local dataset.

Results: The SVM application produced a total accuracy of 94.17%, 80.85%, and 70.74% and area under receiver operating characteristic curves of 0.97, 0.87, and 0.72 between HC versus AD dementia, HC versus aMCI, and aMCI versus AD dementia classification, respectively. The RVR application significantly predicted the baseline and mean cognitive function at three years of follow-up. Qualitatively consistent results were obtained using different regrouping method and the local dataset.

Conclusions: The machine learning methods based on the bilateral hippocampi distinguished across the AD severity spectrum and predicted the baseline and the longitudinal cognitive function with greater accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1177/13872877241296130DOI Listing

Publication Analysis

Top Keywords

cognitive function
16
alzheimer's disease
12
machine learning
12
identification cognitive
8
function prediction
8
pattern analysis
8
severity spectrum
8
rvr application
8
regrouping method
8
versus dementia
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!