Carbon-Bromide Bond Activation by Bidentate Halogen, Chalcogen, Pnicogen, and Tetrel Bonds.

J Phys Chem A

College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang 050024, China.

Published: December 2024

Halogen, chalcogen, pnictogen, and tetrel bonds in organocatalysis have gained noticeable attention. In this work, carbon-bromide bond activation in the Ritter reaction by bidentate imidazole-type halogen, chalcogen, pnicogen, and tetrel bond donors was studied by density functional theory. All of the above four kinds of catalysts exhibited excellent catalytic performance. σ-hole interactions were formed between the Br atom of the reactant and the halogen, chalcogen, pnicogen, and tetrel bond donors, which elongated the C-Br bond and caused the rearrangement of the electron density of the precomplexes, resulting in the breaking of the C-Br bond and Br abstraction. Notably, the catalytic activity of the chalcogen bond is the best, followed by that of the halogen bond. Although the catalytic activity of pnicogen and tetrel bond catalysts is not as good as that of the halogen bond and chalcogen bond, they can still be used as effective substitutes for the halogen bond and chalcogen bond, providing more choices for noncovalent catalysis. Furthermore, within the same group, the fifth-period atomic catalyst is more effective than the fourth-period one for halogen, chalcogen, pnicogen, and tetrel bond donor catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.4c06230DOI Listing

Publication Analysis

Top Keywords

halogen chalcogen
20
pnicogen tetrel
20
chalcogen pnicogen
16
tetrel bond
16
bond
13
chalcogen bond
12
halogen bond
12
carbon-bromide bond
8
bond activation
8
halogen
8

Similar Publications

Metal complex-based probes for the detection of chloride ions.

Dalton Trans

December 2024

Department of Chemical Sciences, IISER Kolkata, Mohanpur, Nadia 741246, West Bengal, India.

Chloride ions play vital roles in a variety of biological and environmental processes, making their accurate and efficient detection critical for both research and practical applications. In this perspective, we explore the recent advancements in the development of metal complex-based probes for chloride ion detection, with a focus on complexes involving transition and lanthanide metals. These probes offer remarkable selectivity and sensitivity, achieved through diverse mechanisms such as metal coordination, hydrogen bonding, electrostatic interactions, and halogen or chalcogen bonding.

View Article and Find Full Text PDF

Herein, we describe a novel coupling between ambiphilic 2-pyridylselenyl reagents and nitriles featuring an active α-methylene group. Depending on the solvent employed, this reaction can yield two distinct types of cationic pyridinium-fused selenium-containing heterocycles, 1,3-selenazolium or 1,2,4-selenadiazolium salts, in high yields. This is in contrast to what we observed before for other nitriles.

View Article and Find Full Text PDF

We have investigated the base-induced long-range halogen dance reactions of 4,5-dibromo- or 4-bromo-5-iodothiazoles bearing sulfur-containing aromatic heterocycles at the C2-position. We have found that the reaction occurs in bithiazole regioisomers or (thiophenyl)thiazole derivatives, in which the C-5 halo group on the thiazole halogen donor regioselectively migrates to a halogen acceptor ring after treatment with lithium bis(trimethylsilyl)amide. The substrate with a thiophen-2-yl substituent required highly basic P4-t-Bu to induce the halogen dance reaction.

View Article and Find Full Text PDF

Exploring the properties of new super-chalcogens based on multiple electron counting rules: a combined DFT and study on [M(BCX)] dianion clusters.

Phys Chem Chem Phys

December 2024

College of Chemistry & Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, 716000, P. R. China.

The theoretical exploration of the super-chalcogen properties of multi-charged sandwich structures whose geometry simultaneously satisfyies the octet rule and Hückel's 4+2 rule is reported here a case study of dianion clusters [M(BCX)] (M = Be, Mg or Ca; X = H, F or Cl). The properties of these dianion clusters [M(BCX)] are close to or even superior to those of traditional clusters based on separate electron-counting rules, , the octet rule and Hückel's 4+2 rule. At the theoretical level of combined and DFT methods, these clusters, including halogen-substituents (F, Cl) are super-chalcogens due to their high first vertical electron detachment energy (FVDE), of which the largest value is 1.

View Article and Find Full Text PDF
Article Synopsis
  • * The study evaluated interaction energy through comparisons with spectroscopic data, geometric properties, and other factors to uncover correlations, particularly focusing on the C═O stretching frequency and nuclear magnetic resonance changes.
  • * While the interaction energy can be estimated from experimental measurements, standard AIM measurements correlate less effectively, and the σ-hole depth on the Lewis acid does not strongly relate to bond strength due to the limitations of electrostatic metrics.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!