Sol-gel nano-silica antireflective (AR) coatings with moisture resistance are widely used for optical elements, such as potassium dihydrogen phosphate (KDP) crystals, but their mildew resistance is often disregarded. This work reports a double-layer AR coating with moisture resistance and mildew resistance for KDP crystals. A polydimethylsiloxane-modified dense silica coating and a quaternary ammonium salt (QAS) modified nanoporous silica coating are selected as the bottom layer and top layer, which effectively serve as a moisture barrier and an antireflection layer, respectively. The coated KDP crystal shows excellent antireflection properties with a maximum transmittance of 99.1% at 532 nm. Perfluorooctyltriethoxysilane vapor treatment is performed further to improve the resistance to moisture and mildew. The resultant double-layer coating exhibits superior moisture resistance with almost no change in optical transmittance after a 3-month exposure to a high-humidity environment. The introduction of QAS and hydrophobicity in the top layer provides exceptional resistance against mildew, achieving an antimicrobial rate of 99.9% against E. coli and A. flavus. Moreover, the laser-induced damage threshold reaches 17.0 J cm (355 nm, 4.5 ns). This work imparts moisture resistance and mildew resistance to AR coatings, providing valuable insights for designing multifunctional AR coatings on optical components.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202400544 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
Sustainable pavement is essential for country development, offering durable, environmentally friendly, and cost-effective infrastructure. For Malaysia, sustainable pavement supports Sustainable Development Goals (SDGs) 9 and 11 while addressing road deterioration caused by increasing traffic volumes and loads. This deterioration shortens pavement service life and necessitates frequent maintenance, driving the need for innovative solutions.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
Compr Rev Food Sci Food Saf
January 2025
Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China.
Traditional drying is a highly energy-intensive process, accounting for approximately 15% of total manufacturing cost, it often resulting in reduced product quality due to low drying efficiency. Biological and chemical agents, referred to as biochemical drying improvers, are employed as pretreatments to enhance both drying characteristics and quality attributes of fruits and vegetables. This article provides a thorough examination of various biochemical drying improvers (including enzymes, microorganisms, edible film coatings, ethanol, organic acids, hyperosmotic solutions, ethyl oleate alkaline solutions, sulfites, cold plasma, carbon dioxide, ozone, inorganic alkaline agents, and inorganic salts) and their effects on improving the drying processes of fruits and vegetables.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2024
School of Medicine, Nankai University, Tianjin, Tianjin, China.
is a foodborne pathogen linked to severe infections in infants and often associated with contaminated powdered infant formula. The RecA protein, a key player in DNA repair and recombination, also influences bacterial resilience and virulence. This study investigated the impact of deletion on the pathogenicity and environmental stress tolerance of BAA-894.
View Article and Find Full Text PDFACS Sustain Resour Manag
December 2024
FSCN Research Center, Organic Chemistry, Mid Sweden University, Holmgatan 10, 851 70 Sundsvall, Sweden.
There is a growing demand for the utilization of sustainable materials, such as cellulose-based alternatives, over fossil-based materials. However, the inherent drawbacks of cellulosic materials, such as extremely low wet strength and resistance to moisture, need significant improvements. Moreover, several of the commercially available wet-strength chemicals and hydrophobic agents for cellulosic material treatment are toxic or fossil-based (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!