Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
White matter hyperintensities (WMH), a common feature of cerebral small vessel disease, affect a wide range of cognitive dysfunctions, including spatial neglect. The latter is a disorder of spatial attention and exploration typically after right hemisphere brain damage. To explore the impact of WMH on neglect-related structural disconnections, the present study investigated the indirectly quantified structural disconnectome induced by either stroke lesion alone, WMH alone, or their combination. Furthermore, we compared different measures of structural disconnection-voxel-wise, pairwise, tract-wise, and parcel-wise-to identify neural correlates and predict acute neglect severity. We observed that WMH-derived disconnections alone were not associated with neglect behavior. However, when combined with disconnections derived from individual stroke lesions, pre-stroke WMH contributed to post-stroke neglect severity by affecting right frontal and subcortical substrates, like the middle frontal gyrus, basal ganglia, thalamus, and the fronto-pontine tract. Predictive modeling demonstrated that voxel-wise disconnection data outperformed other measures of structural disconnection, explaining 42% of the total variance; interestingly, the best model used predictors of stroke-based disconnections only. We conclude that prestroke alterations in the white matter microstructure due to WMH contribute to poststroke deficits in spatial attention, likely by impairing the integrity of human attention networks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586781 | PMC |
http://dx.doi.org/10.1002/hbm.70078 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!