Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Seawater electrolysis under alkaline conditions is a crucial technology for sustainable hydrogen production. However, achieving the long-term stability of the electrocatalyst remains a significant challenge. In this study, it is demonstrated that surface reconstruction of a transition metal nitride (TMN) can be used to develop a highly stable oxygen evolution reaction (OER) electrocatalyst. Rapid introduction of phosphate groups (PO ) accelerates the in situ surface reconstruction of NiFeN, generating a catalyst, with a conductive nitride core and Cl-resistant hydroxide shell that demonstrates outstanding performance, maintaining stability for over 2500 h at 1 A cm current density in alkaline seawater. In situ characterization and density functional theory (DFT) calculations reveal the dynamic evolution of active sites, providing insights into the mechanisms driving long-term stability. This work not only introduces an efficient approach to TMN-based catalyst design but also advances the development of durable electrocatalysts for industrial-scale seawater hydrogen production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202415421 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!