Forward-Scattering and Multiple-Scattering Sources of Errors in UV-Visible Spectroscopy of Microspheres.

Anal Chem

The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand.

Published: December 2024

AI Article Synopsis

  • Conventional UV-visible spectroscopy uses a transmission setup to measure solution spectra, but it can introduce errors especially in samples that scatter light.
  • An experiment with polystyrene spheres of varying sizes revealed significant differences in spectra from two different UV-visible instruments, highlighting errors that contradict established theories like the Beer-Lambert law.
  • A new model has been proposed to account for these scattering errors and could potentially reduce measurement inaccuracies by up to 40%.*

Article Abstract

Conventional UV-visible spectroscopy instruments measure the extinction spectrum of solutions in a transmission configuration. Because of the finite (nonzero) acceptance angle in detection, errors due to forward scattering and multiple scattering can be introduced when measuring scattering samples. We here experimentally quantify these errors using polystyrene spheres of different sizes for two representative analytical/research UV-visible instruments, one based on a single-beam diode array and the other on a double-beam scanning configuration. The measured spectra for particles larger than 1 μm are shown to differ between the two instruments, even at low concentrations, and also vary with concentration (in contradiction with the Beer-Lambert law). We show that systematic errors in the range of 10-40% are common in such measurements. We propose a model accounting for both forward- and multiple-scattering errors and demonstrate its agreement with our experimental results. This model could reduce systematic errors in measurements of scattering samples by up to 40%.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c04912DOI Listing

Publication Analysis

Top Keywords

uv-visible spectroscopy
8
scattering samples
8
systematic errors
8
errors
6
forward-scattering multiple-scattering
4
multiple-scattering sources
4
sources errors
4
errors uv-visible
4
spectroscopy microspheres
4
microspheres conventional
4

Similar Publications

Plasmonic materials can be utilized as effective platforms to enhance luminescent signals of luminescent metal nanoclusters (LMNCs). Both surface enhanced fluorescence (SEF) and shell-isolated nanoparticle-enhanced fluorescence (SHINEF) strategies take advantage of the localized and increased external electric field created around the plasmonic metal surface when excited at or near their characteristic plasmonic resonance. In this context, we present an experimental and computational study of different plasmonic composites, (Ag) Ag@SiO2 and (Au) Au@SiO2 nanoparticles, which were used to enhance the luminescent signal of Au nanoclusters coated with glutathione (GSH) molecule (Au25GSH NCs).

View Article and Find Full Text PDF

Pyrene (Pr) was used to improve the electrochemical and electrochromic properties of polythiophene copolymerized with 3,4-ethylenedioxythiophene (EDOT). The corresponding product, poly(3,4-ethylenedioxythiophene-co-Pyrene) (P(EDOT-co-Pr)), was successfully synthesized by electrochemical polymerization with different monomer concentrations in propylene carbonate solution containing 0.1 M lithium perchlorate (LiClO/PC (0.

View Article and Find Full Text PDF

Biosorbents have demonstrated considerable potential for the remediation of metals in aqueous environments. An aqueous extract of L. (EiE) and its extract-coated silver nanoparticles have been prepared and employed for the removal of iron.

View Article and Find Full Text PDF

Synthesized 3,4-Diaminothieno[2,3-b]thiophene-2,5-dicarbohydrazide (DTT) Schiff base derivatives newly were synthesized by attaching with different aldehydes, deposited in thin film form by thermal evaporation technique, and characterized by UV-Visible-NIR spectroscopy, FT-IR, NMR, and elemental analysis. It is revealed that compound 4 has the highest absorption peak intensity at 586 nm. The allied absorption, dielectric, and dispersion parameters have been calculated and discussed.

View Article and Find Full Text PDF

Excess consumption of antibiotics leads to antibiotic resistance that hinders the control and cure of microbial diseases. Therefore, it is crucial to monitor the antibiotic levels in the environment. In this proposed research work, an optical nano-sensor was devised that can sense the ultra-low concentration of antibiotics, in samples like tap water using fluorescent zinc oxide quantum dots (ZnO QDs) based nano-sensor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!