Starting from a single layer of NbS grown on graphene by molecular beam epitaxy, the single unit cell thick 2D materials NbS-2D and NbS-2D are created using two different pathways. Either annealing under sulfur-deficient conditions at progressively higher temperatures or deposition of increasing amounts of Nb at elevated temperature result in phase-pure NbS-2D followed by NbS-2D. The materials are characterized by scanning tunneling microscopy, scanning tunneling spectroscopy, and X-ray photoemission spectroscopy. The experimental assessment combined with systematic density functional theory calculations reveals their structure. The 2D materials are covalently bound without any van der Waals gap. Their stacking sequence and structure are at variance with expectations based on corresponding bulk materials highlighting the importance of surface and interface effects in structure formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202408044 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!