Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Numerous signaling pathways are activated during hypoxia to facilitate angiogenesis, promoting interactions among endothelial cells and initiating downstream signaling cascades. Although the pivotal role of the nitric oxide (NO) response pathway is well-established, the involvement of arginine-specific metabolism and bioactive lipid mechanisms in 3D flow-activated in vitro models remains less understood. In this study, we explored the levels of arginine-specific metabolites and bioactive lipids in human coronary artery endothelial cells (HCAECs) under both transient and persistent hypoxia. We compared targeted metabolite levels between a 2D static culture model and a 3D microvessels-on-chip model. Notably, we observed robust regulation of NO metabolites in both transient and persistent hypoxic conditions. In the 2D model under transient hypoxia, metabolic readouts of bioactive lipids revealed increased oxidative stress markers, a phenomenon not observed in the 3D microvessels. Furthermore, we made a novel discovery that the responses of bioactive lipids were regulated by hypoxia inducible factor-1α (HIF-1α) in the 2D cell culture model and partially by HIF-1α and flow-induced shear stress in the 3D microvessels. Immunostaining confirmed the HIF-1α-induced regulation under both hypoxic conditions. Real-time oxygen measurements in the 3D microvessels using an oxygen probe validated that oxygen levels were maintained in the 3D model. Overall, our findings underscore the critical regulatory roles of HIF-1α and shear stress in NO metabolites and bioactive lipids in both 2D and 3D cell culture models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/21688370.2024.2431416 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!