Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Compared with conventional vaccines, mRNA vaccines have considerable advantages in design, production, and application, especially in dealing with emerging infectious diseases. Particularly, mRNA vaccines were the first to be recommended by the World Health Organization for emergency use during the COVID-19 pandemic. A key to the design of mRNA vaccines is to ensure the stable and sufficient expression of the encoded protein in the recipient. In recent years, advances have been attained in the experimental and computational research in this area. This review focused on the progress and problems in improving the translation efficiency of mRNA vaccines in recent years, aiming to promote related research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13345/j.cjb.240193 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!