AI Article Synopsis

  • Atomic Layer Etching (ALE) is crucial for creating complex 3D structures in integrated circuits, and new processes need to be explored to adapt ALE for various materials.
  • A novel isotropic plasma ALE process using hexafluoroacetylacetone (Hhfac) combined with H plasma has been developed, achieving precise control of AlO film thickness with a stable etch rate of 0.16 nm per cycle and a high ALE synergy of 98%.
  • Advanced techniques like Fourier transform infrared spectroscopy (FTIR) and density functional theory (DFT) simulations reveal that the ALE mechanism involves a balance between etching and surface inhibition reactions, allowing effective thickness control on a nanometer scale with minimal contamination.

Article Abstract

Atomic layer etching (ALE) is required to fabricate the complex 3D structures for future integrated circuit scaling. To enable ALE for a wide range of materials, it is important to discover new processes and subsequently understand the underlying mechanisms. This work focuses on an isotropic plasma ALE process based on hexafluoroacetylacetone (Hhfac) doses followed by H plasma exposure. The ALE process enables accurate control of AlO film thickness with an etch rate of 0.16 ± 0.02 nm per cycle, and an ALE synergy of 98%. The ALE mechanism is investigated using Fourier transform infrared spectroscopy (FTIR) and density functional theory (DFT) simulations. Different diketone surface bonding configurations are identified on the AlO surface, suggesting that there is competition between etching and surface inhibition reactions. During the Hhfac dosing, the surface is etched before becoming saturated with monodentate and other hfac species, which forms an etch inhibition layer. H plasma is subsequently employed to remove the hfac species, cleaning the surface for the next half-cycle. On planar samples no residue of the Hhfac etchant is observed by FTIR after H plasma exposure. DFT analysis indicates that the chelate configuration of the diketone molecule is the most favorable surface species, which is expected to leave the surface as volatile etch product. However, formation of the other configurations is also energetically favorable, which explains the buildup on an etch inhibiting layer. The ALE process is thus hypothesized to work an etch inhibition and surface cleaning mechanism. It is discussed that such a mechanism enables thickness control on the sub-nm scale, with minimal contamination and low damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582961PMC
http://dx.doi.org/10.1039/d4tc03615hDOI Listing

Publication Analysis

Top Keywords

ale process
12
atomic layer
8
layer etching
8
plasma exposure
8
surface
8
hfac species
8
etch inhibition
8
ale
7
plasma
5
etch
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!