Heat strain differences walking in hot-dry and warm-wet environments of equivalent wet bulb globe temperature.

Temperature (Austin)

Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York, USA.

Published: August 2024

Wet bulb globe temperature (WBGT) is a commonly used measure to predict heat strain in workers. Different combinations of environmental conditions can create equivalent WBGT, yet it remains unknown whether biophysical, physiological, and perceptual responses vary when working in different but equivalent hot conditions. The purpose of the study was to compare body heat storage and physiological and perceptual strain during walking in hot-dry and warm-wet conditions of the same WBGT. Twelve subjects (age: 22 ± 2 y) walked for 90 min at 60% maximum heart rate in a 27.8°C WBGT environment of hot-dry (HD: 40°C, 19% relative humidity) or warm-wet (WW: 30°C, 77% relative humidity) conditions. Partitional calorimetry was used to estimate heat storage. Core temperature at 90 min (HD: 38.5 ± 0.5°C; WW: 38.4 ± 0.3°C,  = 0.244) and cumulative heat storage (HD: 115 ± 531 Kj; WW: 333 ± 269 Kj,  = 0.242) were not different. At 90 min, heart rate was not different (HD: 160 ± 19 bpm; WW: 154 ± 15 bpm,  = 0.149) but skin temperature (HD: 36.6 ± 0.9°C; WW: 34.7 ± 0.6°C,  < 0.001), thirst (HD: 6.8 a.u.; WW: 5.3 a.u.  = 0.043), and sweat rate (HD: 15.1 ± 4.4 g·min; WW: 10.0 ± 4.1 g·min,  < 0.001) were greater in HD compared to WW. Hot environments of equivalent 27.8°C WBGT created equivalent core temperature despite differences in physiological strain during exercise, including earlier onset of cardiovascular strain, greater sweat rate, and higher skin temperature compared to a WW environment. ClinicalTrials.gov ID NCT04624919.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583583PMC
http://dx.doi.org/10.1080/23328940.2024.2384185DOI Listing

Publication Analysis

Top Keywords

heat storage
12
heat strain
8
walking hot-dry
8
hot-dry warm-wet
8
wet bulb
8
bulb globe
8
globe temperature
8
physiological perceptual
8
heart rate
8
relative humidity
8

Similar Publications

Understanding the origin and effect of the confinement of molecules and transition states within the micropores of a zeolite can enable targeted design of such materials for catalysis, gas storage, and membrane-based separations. Linear correlations of the thermodynamic parameters of molecular adsorption in zeolites have been proposed; however, their generalizability across diverse molecular classes and zeolite structures has not been established. Here, using molecular simulations of >3500 combinations of adsorbates and zeolites, we show that linear trends hold in many cases; however, they collapse for highly confined systems.

View Article and Find Full Text PDF

Phase change materials (PCMs) have been widely recognized as a highly efficient medium for thermal energy storage. Many studies have identified the low thermal conductivity of PCMs. In the current investigation, the researchers have blended PCM with nanoparticles to enhance its thermal conductivity and electrical efficiency.

View Article and Find Full Text PDF

The global seasonal cycle of energy in Earth's climate system is quantified using observations and reanalyses. After removing long-term trends, net energy entering and exiting the climate system at the top of the atmosphere (TOA) should agree with the sum of energy entering and exiting the ocean, atmosphere, land, and ice over the course of an average year. Achieving such a balanced budget with observations has been challenging.

View Article and Find Full Text PDF

Assessing the impact of limited and extended oven heating exposure on the stable hydrogen and oxygen isotopic composition of wheat-processed products with varying formulations.

Food Chem

December 2024

Food Quality and Design, Wageningen University & Research, P.O. Box 17, 6700, AA, Wageningen, The Netherlands; School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland. Electronic address:

This study aims to assess the effects of oven heating on the isotopic ratios of eight formulated wheat-processed products with different gluten-to-starch ratios. Two heating treatments were applied: limited heating in an oven with exposure to 100 °C for a specific time (cooking time-dependent) and extended heating in an oven with exposure to 100 °C, 180 °C and 260 °C for 6 min. Results showed limited heating exposure did not alter the δH and δO in the wheat-processed products.

View Article and Find Full Text PDF

Constructing a green modifier by using glyoxal-urea resin and chitosan to obtain a modified soy protein adhesive with high bonding strength and excellent water resistance.

Int J Biol Macromol

December 2024

Yunnan Key Laboratory of Wood Adhesives and Glue Products, Southwest Forestry University, Kunming 650224, PR China; College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China. Electronic address:

The manufacturing of soy-based adhesives with high bonding strength, excellent water resistance, and exceptional environmental performance still faces difficulties. In this work, using glyoxal-urea (GU) resin, chitosan (CS), and soy protein isolate (SPI) as the primary raw materials in order to effectively mitigate the release of free formaldehyde commonly found in traditional wood-based panels. Obtaining an adhesive with high strength, excellent water resistance, and a stable cross-linking structure of GU/CS/SPI (CS represents different mass fractions of chitosan solution).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!