The optimum condition for electric vehicles' battery powering factors to travel distance: A model-based approach.

Heliyon

Engineering Department, Faculty of Marine Technology and Natural Sciences, Klaipeda University, H. Manto 84, 92294, Klaipeda, Lithuania.

Published: November 2024

The development of electric vehicles (EVs) and their power source systems (PSS) is a rapidly growing field of technology. However, the EV's travel distance (range between charging stations) depends on the agility of the PSS, or battery capacity system. EV driving range and battery capacity are the two most significant technical challenges in commercializing EVs. This study aims to propose an integrated model that identifies the optimal energy factor orientation, enabling EVs to cover the maximum travel distance and reach the charging station for their next trip. Additionally, the artificial intelligence (AI) and statistical models were integrated and applied to predict, validate, and explain how energy factors affect the driving range of EVs. The developed models and validations revealed that maintaining precise assimilation of battery power factors can vary the EV's travel distance from 60 to 610 km. In this case, we have identified 77.5 kWh battery capacity and 14.5 kW charging capacity as the optimum power source factors. After 5.5 h of charging, various adjustments to power source factors allow for optimum battery performance. We have also proposed the central composite factorial design (CCFD) to compute the impact of energy factors on travel distance. The study used the response surface methodology (RSM) and an in-house-developed AI-based algorithm to achieve the research results. The alignment percentage between model-predicted data and real-time outputs showed an extremely high precision of over 95 % and confidence in the findings' reliability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582451PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e39719DOI Listing

Publication Analysis

Top Keywords

travel distance
20
power source
12
battery capacity
12
factors travel
8
ev's travel
8
driving range
8
energy factors
8
source factors
8
battery
6
factors
6

Similar Publications

Cochlear Amplification in the Short-Wave Region by Outer Hair Cells changing Organ-of-Corti area to Amplify the Fluid Traveling Wave.

Hear Res

December 2022

Eaton-Peabody Lab, Mass. Eye and Ear, 243 Charles St., Boston MA 02114, USA.

Many details of the operation of the mammalian cochlea are known, but how they all work together to produce cochlear amplification is not understood. Outer-hair-cell (OHC) motility produces two kinds of amplification: non-propagating amplification (NPA) that is from local OHCs, and traveling-wave amplification (TWA) that increases basilar-membrane (BM) motion. Proposed here are a series of hypotheses that provide a new explanation, the "OoC-area-pump", for TWA: (1) In the short-wave region OHC vibrations cause cyclic longitudinal motion of fluid in the organ of Corti (OoC) and peri-Deiters-cell tissue, (2) the longitudinal motion changes the local OoC area, which (3) by reticular-lamina (RL) movement drives the fluid in scala media in a way that amplifies the fluid-pressure traveling wave.

View Article and Find Full Text PDF

Background: With the proportion of tuberculosis cases that are extrapulmonary tuberculosis (EPTB) increasing in recent years, understanding and addressing factors contributing to the prolonged time to diagnosis (TTD) of EPTB patients is vital.

Methods: We enrolled presumptive EPTB patients for a cohort study from 2018-2020 in Ujjain, India. Based on a structured questionnaire, the patients were interviewed for socio-demographic and clinical information, including previously visited health facilities (HF) for this illness.

View Article and Find Full Text PDF

Automated large-scale farmland preparation operations face significant challenges related to path planning efficiency and uniformity in resource allocation. To improve agricultural production efficiency and reduce operational costs, an enhanced method for planning land preparation paths is proposed. In the initial stage, unmanned aerial vehicles (UAVs) are employed to collect data from the field, which is then used to construct accurate farm models.

View Article and Find Full Text PDF

Mobile clinics routing and scheduling in the Witzenberg region of South Africa.

PLoS One

January 2025

Department of Health and Wellness, Cape Winelands District, Ceres, South Africa.

Despite much literature on operations research applied to various healthcare problems, impactful implementation in public healthcare is limited, which often results in allocative inefficiency. This article uses a mobile clinic routing and scheduling problem in the Witzenberg region of South Africa as a case study to demonstrate the improvement of implementation success through cross-disciplinary collaboration, and also to propose a new three-stage approach for modelling a mobile clinic problem that incorporates continuity of care, fairness, and minimisation of distance travelled. Mobile clinics are used in many countries to improve access to healthcare for rural communities.

View Article and Find Full Text PDF

Disruption of seasonal influenza circulation and evolution during the 2009 H1N1 and COVID-19 pandemics in Southeastern Asia.

Nat Commun

January 2025

School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China.

East, South, and Southeast Asia (together referred to as Southeastern Asia hereafter) have been recognized as critical areas fuelling the global circulation of seasonal influenza. However, the seasonal influenza migration network within Southeastern Asia remains unclear, including how pandemic-related disruptions altered this network. We leveraged genetic, epidemiological, and airline travel data between 2007-2023 to characterise the dispersal patterns of influenza A/H3N2 and B/Victoria viruses both out of and within Southeastern Asia, including during perturbations by the 2009 A/H1N1 and COVID-19 pandemics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!