AI Article Synopsis

  • * This study focuses on incorporating varying percentages of bio-based polyurethane (PU) into cementitious mortar, with 2% PU showing impressive gains in compressive strength, flexural strength, and initial flow performance after 28 days.
  • * The research demonstrates that bio-based PU not only improves the mechanical properties of cementitious mortars but also establishes strong interfacial bonds, suggesting its potential as an eco-friendly option for industrial flooring applications.

Article Abstract

The increasing focus on sustainable construction is driving the industry toward materials that combine functionality with environmental benefits. A viable approach to address this demand is the use of bio-based additives to improve traditional cementitious composites. This study introduces a novel approach to developing a polymer-modified construction material by incorporating varied amounts (0, 1, 2, 3, and 6%) of bio-based polyurethane (PU), derived from polyglycerol polyester polyol, into cementitious mortar. The resulting PU-modified cementitious mortar (PUMC) was evaluated for its mechanical, physicochemical, and microstructural properties. Results show that the incorporation of 2% PU by cement weight significantly enhanced compressive strength by 58.2%, flexural strength by 37.0%, and initial flow performance by 20.0% after 28 days, while a 6% PU incorporation provided the best abrasion resistance. These improvements were attributed to a uniform particle and pore size distribution and the formation of a uniform interpenetrating polymer network (IPN), as confirmed by BET-BJH and SEM-EDX analyses. Additionally, FTIR and TGA analyses revealed that the metal-ligand coordination between Ca ions in the cement mortar and PU ligand groups strengthened the interfacial connectivity through noncovalent bonding, further enhancing the material properties. This research highlights the potential of bio-based PU as an eco-friendly additive that significantly improves the performance of cementitious mortars, making it a promising option for industrial flooring applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579744PMC
http://dx.doi.org/10.1021/acsomega.4c04228DOI Listing

Publication Analysis

Top Keywords

cement mortar
8
polyglycerol polyester
8
polyester polyol
8
cementitious mortar
8
characterization performance
4
performance enhancement
4
bio-based
4
enhancement bio-based
4
bio-based polyurethane-modified
4
polyurethane-modified cement
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!