To improve the dry powder jet extinguishing efficiency, the velocity change and spatial distribution of ultrafine dry powder particles under the action of high Mach number compressible air are studied by using the SST turbulence model and the gas-solid two-phase coupled model. The effects of nozzle pressure ratio, particle diameter, and mass flow on parameters such as Mach number and radial diffusion width are analyzed,and the influence of injection pressure and jet performance is verified by ultrafine dry powder jet experiment. The results show that the increase in the particle size will weaken particle flowability; the Saffman lift force has a significant effect on the particles when the nozzle expansion angle is large, and a particle-free zone is produced near the center axis; increasing the nozzle pressure ratio or reducing the dry powder mass flow rate will help improve the particle velocity in the core jet area outside the nozzle, and the accuracy of this law is proved by experiments. These findings are expected to provide valuable insights for the design of fire extinguishing nozzle structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579717PMC
http://dx.doi.org/10.1021/acsomega.4c08542DOI Listing

Publication Analysis

Top Keywords

dry powder
20
ultrafine dry
12
powder jet
8
mach number
8
nozzle pressure
8
pressure ratio
8
mass flow
8
nozzle
6
jet
5
dry
5

Similar Publications

Drug-Phospholipid Co-Amorphous Formulations: The Role of Preparation Methods and Phospholipid Selection.

Pharmaceutics

December 2024

Department of Pharmacy, Faculty of Health and Medical Science, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.

: This study aims to broaden the knowledge on co-amorphous phospholipid systems (CAPSs) by exploring the formation of CAPSs with a broader range of poorly water-soluble drugs, celecoxib (CCX), furosemide (FUR), nilotinib (NIL), and ritonavir (RIT), combined with amphiphilic phospholipids (PLs), including soybean phosphatidylcholine (SPC), hydrogenated phosphatidylcholine (HPC), and mono-acyl phosphatidylcholine (MAPC). : The CAPSs were initially prepared at equimolar drug-to-phospholipid (PL) ratios by mechano-chemical activation-based, melt-based, and solvent-based preparation methods, i.e.

View Article and Find Full Text PDF

The pulmonary route for drug administration has garnered a great deal of attention in therapeutics for treating respiratory disorders. It allows for the delivery of drugs directly to the lungs and, consequently, the maintenance of high concentrations at the action site and a reduction in systemic adverse effects compared to other routes, such as oral or intravenous. Nevertheless, the pulmonary administration of drugs is challenging, as the respiratory system tries to eliminate inhaled particles, being the main responsible mucociliary escalator.

View Article and Find Full Text PDF

Background: Spray drying, whilst a popularly employed technique for powder formulations, has limited applications for large-scale proliposome manufacture.

Objectives: Thus, the aim of this study was to investigate spray drying parameters, such as inlet temperature (80, 120, 160, and 200 °C), airflow rate (357, 473, and 601 L/h) and pump feed rate (5, 15, and 25%), for individual carbohydrate carriers (trehalose, lactose monohydrate (LMH), and mannitol) for 24 spray-dried (SD) formulations (F1-F24).

Methods: Following optimization, the SD parameters were trialed on proliposome formulations based on the same carriers and named as spray-dried proliposome (SDP) formulations.

View Article and Find Full Text PDF

This study explores the development and characterization of spray-dried composite microparticles consisting of levofloxacin (LVX, a broad-spectrum antibiotic), and ambroxol (AMB, a mucolytic agent that has antibacterial and antibiofilm properties), for the intended application of the drug against lower respiratory tract infections (LRTIs). A range of LVX to AMB mass ratios (1:1, 1:0.5, and 1:0.

View Article and Find Full Text PDF

A Study on the Preparation and Performance of Ultrafine Powder Made of Industrial Hemp Degumming Residue.

Polymers (Basel)

December 2024

School of Textile Science and Engineering, Wuhan Textile University, No. 1 Sunshine Avenue, Jiangxia District, Wuhan 430200, China.

Industrial hemp, one of the most widely available and extensively produced varieties, generates a substantial amount of waste in the form of hemp cellulose. This study uses a recycling method combining crushing and acid treatment to convert leftover hemp fiber into ultrafine powder. A scanning electron microscope (SEM), an atomic force microscope (AFM), Fourier transform infra-red spectroscopy (FTIR), and X-ray diffraction (XRD) were used to examine the morphology of acid-treated hemp fiber heated to 200 °C and crushed into powder.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!