A large number of studies have shown the association of kidney disease with viral infections in the body. Viral infections cause kidney injury in two manners, the systemic inflammation (cytokine storm) and the direct infection of kidney cells. Concerning direct viral infection of podocytes, the mechanism underlying virus-induced podocyte injury remains largely unknown and requires effective experimental models to facilitate its study. Here, we performed molecular characterization of immortalized human podocyte cell line (HPC) infected with lentivirus by RNA-seq. Bioinformatics analysis revealed a strong innate immune response in the cells, including interferon production and signaling. Meanwhile, activations of ferroptosis pathway and TNF-alpha signaling were also found, consistent with an impaired viability of the cells. Lentiviral infection also upregulated expression of APOL1 as observed in patients with HIV associated nephropathy (HIVAN) and diabetic nephropathy (DN). Interestingly, when the lentiviral infected cells were treated with Adriamycin (ADR), the ADR-associated signaling pathways were not interfered and remained activated as that in the cells treated with ADR only, suggesting that the virus and ADR have distinct mechanisms in damaging podocytes. Thus, the lentivirus-infected HPC cells represent a useful model of viral infection-associated podocytopathy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578807 | PMC |
http://dx.doi.org/10.62347/BBCX1142 | DOI Listing |
J Cannabis Res
January 2025
School of Pharmacy, Pharmaceutical Sciences Department, Lebanese American University, Byblos, Lebanon.
Background: Cisplatin is an anti-cancer drug used to treat a plethora of solid tumors. However, it is associated with dose dependent nephrotoxicity limiting its use as anticancer agent.
Objective: The current study aimed to investigate the nephroprotective effect of native Lebanese Cannabis sativa in both in vitro and in vivo mice model of cisplatin-induced nephrotoxicity.
J Allergy Clin Immunol
January 2025
Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN; Department of Pharmacology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN.
Background: Studies of human IgE and its targeted epitopes on allergens have been very limited. We have an established method to immortalize IgE encoding B cells from allergic individuals.
Objective: To develop an unbiased and comprehensive panel of peanut-specific human IgE mAbs to characterize key immunodominant antigenic regions and epitopes on peanut allergens to map the molecular interactions responsible for inducing anaphylaxis.
J Mol Cell Cardiol Plus
June 2024
Amsterdam UMC location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands.
Few immortalized cardiac microvascular endothelial cell (CMEC) lines are available, particularly mouse lines. We purchased the CLU510 mCMEC line (Cedarlane), isolated by fluorescence-activated cell sorting for CD31 and VE-cadherin. The cell line has been used in previous studies, although none report CD31 or VE-cadherin expression.
View Article and Find Full Text PDFReprod Biol
January 2025
Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan.
Endometriosis is an estrogen-dependent benign disease characterized by growth of the endometrial tissue outside the uterine wall. Several reports suggest the possibility of the pathogenesis and recurrence of endometriosis being related to functions of stem/progenitor cells of the endometrium. The drawback of the widely used method of using Hoechst 33342, a fluorescent dye, to collect stem cell-like populations, is the requirement of an ultraviolet (UV) excitation source not commonly provided on standard flow cytometers.
View Article and Find Full Text PDFMolecules
January 2025
Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania.
The evaluation of chlorhexidine-carrier nanosystems based on iron oxide magnetic nanoparticles (IOMNPs), has gained significant attention in recent years due to the unique properties of the magnetic nanoparticles (NPSs). Chlorhexidine (CHX), a well-established antimicrobial agent, has been widely used in medical applications, including oral hygiene and surgical antisepsis. This study aims to report an in vitro and in ovo toxicological screening of the synthesized CHX-NPS nanosystem, of the carrier matrix (maghemite NPSs) and of the drug to be delivered (CHX solution), by employing two types of cell lines-HaCaT immortalized human keratinocytes and JB6 Cl 41-5a murine epidermal cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!