Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Lately, various scientists have been paying a lot of consideration to the design of operational antimicrobial agents due to the rise of multiple drug-resistant strains. Therefore, this work is aimed at discovering the biochemical behavior of the analyzed polypeptides in relation to glutamine amidotransferase GatD (pdb id: 5n9m) for gram positive bacteria and beta-lactamase class A (pdb id: 5fqq) for gram negative bacteria. Additionally, this study aims to identify the specific atoms involved in the observed biochemical interactions between the studied complexes using computational methods.
Methods: In this work, five polypeptides were studied using insilico approach via Spartan 14 software, molecular operating environment, ADMETSar, and Gromacs.
Results: The descriptors obtained revealed the activities of the studied compounds, the molecular interaction between the studied ligands as well as glutamine amidotransferase GatD (pdb id: 5n9m) and beta-lactamase class A (pdb id: 5fqq) which thereby exposed compound 1 and 5 to be the compounds with greatest ability to inhibit the studied targets among other studied compounds.
Conclusion: Our discoveries may open door for the design of collection of proficient polypeptide-based drug-like compounds as potential anti-microbial agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578866 | PMC |
http://dx.doi.org/10.62347/YLVH4793 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!