Challenges of Continuous Wave EPR of Broad Signals-The Ferritin Case.

Appl Magn Reson

Huygens-Kamerlingh Onnes Laboratorium, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands.

Published: October 2024

AI Article Synopsis

  • * Conventional baseline correction methods struggle with these broad signals due to limited points for polynomial interpolation, which work better for narrow features.
  • * A new baseline correction method is proposed that effectively analyzes the broad signal of ferritin, even when it's mixed with narrower signals, allowing for better parameter extraction in the analysis process.

Article Abstract

Unlabelled: The study of continuous wave (cw) electron paramagnetic resonance (EPR) spectra still poses a challenge for very broad signals, especially when the spectrum extends over a large part of the accessible field range. The difficulties derive from instrumental challenges, because of insufficient modulation depth and the need to apply measurement conditions that enhance cavity background. The biggest problem, however, is how to define a baseline such that spectral distortions are minimized. Conventional methods rely on a suitable choice of points outside the range of the signal of interest to perform a polynomial interpolation. These methods are effective in most cases where the signal of interest comprises only a narrow range of magnetic field (narrow features). In this study, a novel method of baseline correction for broad signals is proposed and compared to conventional methods. It takes into account that there are only few anchor points for the baseline. The method is applied to the signal of the iron-storage protein ferritin. The ferritin signal is a broad band that extends from zero to 0.8 T. An approach is developed by which this broad signal is analyzed reliably. The method is also extended to the case where the broad signal is superimposed on narrow signals and enables to extract the parameters of both types of signals in a fitting pipeline.

Supplementary Information: The online version contains supplementary material available at 10.1007/s00723-024-01719-y.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582094PMC
http://dx.doi.org/10.1007/s00723-024-01719-yDOI Listing

Publication Analysis

Top Keywords

continuous wave
8
broad signals
8
conventional methods
8
signal interest
8
broad signal
8
broad
6
signal
6
challenges continuous
4
wave epr
4
epr broad
4

Similar Publications

Biocatalysis has emerged as a green approach for efficient and sustainable production in various industries. In recent decades, numerous advancements in computational and predictive approaches, including ancestral sequence reconstruction (ASR) have sparked a new wave for protein engineers to improve and expand biocatalyst capabilities. ASR is an evolution-based strategy that uses phylogenetic relationships among homologous extant sequences to probabilistically infer the most likely ancestral sequences.

View Article and Find Full Text PDF

Herein, we present a case of idiopathic generalized epilepsy (IGE) manifesting as de novo late-onset absence status epilepticus (ASE) following mild coronavirus disease 2019 (COVID-19). A woman in her 40s presented with persistent 3-5.5 Hz generalized spike-wave complexes (SWCs) on electroencephalography (EEG).

View Article and Find Full Text PDF

Ordinary differential equation models such as the classical SIR model are widely used in epidemiology to study and predict infectious disease dynamics. However, these models typically assume that populations are homogeneously mixed, ignoring possible variations in disease prevalence due to spatial heterogeneity. To address this issue, reaction-diffusion models have been proposed as an alternative approach to modeling spatially continuous populations in which individuals move in a diffusive manner.

View Article and Find Full Text PDF

A ridge-loaded staggered double-vane slow-wave structure is proposed for terahertz radiation sources employing a sheet electron beam. This slow-wave structure has the advantages of enhanced electric field and energy density distribution and improved interaction impedance in the beam-wave interaction region. High-frequency characteristics are investigated for the proposed slow wave structure and compared with those of the staggered double-vane slow wave structure.

View Article and Find Full Text PDF

High density laminar recordings reveal cell type and layer specific responses to infrared neural stimulation in the rat neocortex.

Sci Rep

December 2024

Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/a, Budapest, 1083, Hungary.

Infrared neural stimulation has consistently shown that temperature is a critical neuronal state variable. However, a comprehensive understanding of the biophysical background is essential. In this study, using high-density laminar electrode recordings, we investigated the impact of pulsed and continuous-wave infrared illumination on cortical neurons in anesthetized rats ([Formula: see text]).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!