Impacts of increased temperatures on floral rewards and pollinator interactions: a meta-analysis.

Front Plant Sci

Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.

Published: November 2024

Flowering plants produce pollinator rewards such as nectar and pollen, whose quantity and quality usually depend on the whole-plant state under specific environmental conditions. Increasing aridity and temperature linked to climate change may force plants to allocate fewer resources to these traits, potentially disrupting plant-pollinator interactions. In this study, for the first time, both quantitative review (vote-counting procedure) and meta-analytic approach were used to assess the implications of increased temperatures linked to global warming on floral rewards, including nectar (sugar concentration, content, and volume) and pollen (germination and viability), as well as on pollinator visits. Furthermore, we explored whether observed effects of warming are related either to temperature range, plant type (wild vs crop), or study approach (greenhouse vs field experiments). We also assessed the correlations between elevated temperatures and the characteristics that were affected by the temperature range. The results of the vote-counting technique showed that higher temperatures led to a decrease in floral rewards but did not affect the number of pollinator visits. Concurrently, meta-analysis detected adverse effects of warming on pollen germination and viability. Warming effects depended on the plant type for pollen germination and viability, on study approach for nectar sugar concentration and pollen germination, and on temperature range for pollen germination and pollinator visits. Additionally, we found that pollen germination and pollinator visits significantly decreased as temperature range increased. Our results showed that global warming affects floral rewards in both wild and crop plants, providing insights into the effects of changing climatic conditions on plant-pollinator interactions and pollination services.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581868PMC
http://dx.doi.org/10.3389/fpls.2024.1448070DOI Listing

Publication Analysis

Top Keywords

pollen germination
24
floral rewards
16
pollinator visits
16
temperature range
16
germination viability
12
increased temperatures
8
plant-pollinator interactions
8
global warming
8
warming floral
8
nectar sugar
8

Similar Publications

As a globally significant economic crop, the seed size of soybean ( [L.] Merr.) is jointly regulated by internal genetic factors and external environmental signals.

View Article and Find Full Text PDF

Pollen development and germination play a crucial role in the sexual reproduction of plants. This study analysis of transcriptional dynamics of foxtail millet pollen with other tissues and organs (ovule, glume, seedling and root) through RNA-sequencing revealed that a total of 940 genes were up-regulated in foxtail millet pollen. Based on this, we analyzed the genes involved in pollen tube growth of receptor kinases and small peptides, calcium signaling, small G proteins, vesicle transport, cytoskeleton, cell wall correlation, and transcription factors that are up-regulated in pollen.

View Article and Find Full Text PDF

In flowering plants, pollen grain must undergo a series of critical processes, including adhesion, hydration, and germination, which are dependent on the stigma, to develop a pollen tube. This pollen tube then penetrates the stigma to reach the internal tissues of pistil, facilitating the transport of non-motile sperm cells to the embryo sac for fertilization. However, the dry stigma, characterized by the absence of an exudate that typically envelops the wet stigma, functions as a multi-layered filter in adhesion, hydration, germination and penetration that permits the acceptance of compatible pollen or tubes while rejecting incompatible ones, thereby protecting the embryo sac from ineffective fertilization and maintaining species specificity.

View Article and Find Full Text PDF

Autophagy modulates male fertility in arabidopsis.

Autophagy

December 2024

Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, China.

Macroautophagy/autophagy is a highly conserved catabolic process in eukaryotes and plays pivotal roles in regulating male fertility and sexual reproduction. In metazoans, mutations in core ATG (autophagy related) proteins frequently result in severe defects in sperm formation and maturation, resulting in male sterility. In contrast, autophagy has traditionally been considered dispensable for reproduction in , as most mutants can complete fertilization and produce viable progeny without apparent reproductive defects.

View Article and Find Full Text PDF

In this work, we propose a possible correlation between carbohydrate content in hazelnut pollen (wild type) and viability/germinability, also in a perspective of adaptation to climate variability. Samples from four different cultivation fields in Italy showed values of pollen viability characterized by high levels, ranging between 77.3 and 98.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!