Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Luminescence color tuning of less toxic I-III-VI-based quantum dots (QDs) has been intensively investigated for application in wide-color-gamut displays. However, the emission peaks of these multinary QDs are relatively broad in the blue-light region compared to those in the green and red regions. Here, we report the synthesis of AgGaS (AGS) QDs that show a narrow blue emission peak through nonstoichiometry control and surface defect engineering. While as-prepared AGS QDs with angular shapes primarily exhibited a weak green photoluminescence (PL) peak at 520 nm assigned to defect-site emission, treatment with chloride ions resulted in the appearance of a sharp band-edge PL peak at 442 nm, with the number of surface defect sites decreasing as a result of rounding off the angles of the QD shape. Further coating of the QDs with a gallium sulfide (GaS) shell selectively enhanced the band-edge PL peak at 446 nm with a narrow full width at half-maximum of 22 nm, where the defect-site emission was almost eliminated due to the removal of surface defect sites. The PL quantum yield (QY) significantly increased from 5.5% for chloride-treated AGS QDs to 12% for AGS core-GaS shell QDs (AGS@GaS). QD light-emitting diodes fabricated with AGS@GaS QDs exhibited a sharp emission peak at 450 nm, slightly red-shifted from that of the PL spectrum of the QD films, accompanied by the reappearance of a weak broad defect-site emission peak at around 560 nm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c13987 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!