Microbial biosurfactants have garnered significant interest from industry due to their lower toxicity, biodegradability, activity at lower concentrations and higher resistance compared to synthetic surfactants. The deep-sea Rhodococcus sp. I2R has been identified as a producer of glycolipid biosurfactants, specifically succinoyl trehalolipids, which exhibit antiviral activity. However, genome mining of this bacterium has revealed a still unexplored repertoire of biosurfactants. The microbial genome was found to host five non-ribosomal peptide synthetase (NRPS) gene clusters containing starter condensation domains that direct lipopeptide biosynthesis. Genomics and mass spectrometry (MS)-based metabolomics enabled the linking of two NRPS gene clusters to the corresponding lipopeptide families, leading to the identification of 20 new cyclolipopeptides, designated as rhodoheptins, and 33 new glycolipopeptides, designated as rhodamides. An integrated in silico gene cluster and high-resolution MS/MS data analysis allowed us to elucidate the planar structure, inference of stereochemistry and reconstruction of the biosynthesis of rhodoheptins and rhodamides. Rhodoheptins are cyclic heptapeptides where the N-terminus is bonded to a β-hydroxy fatty acid forming a macrolactone ring with the C-terminal amino acid residue. Rhodamides are linear 14-mer glycolipopeptides with a serine- and alanine-rich peptide backbone, featuring a distinctive pattern of acetylation, glycosylation and succinylation. These molecules exhibited biosurfactant activity in the oil-spreading assay and showed moderate antiproliferative effects against human A375 melanoma cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586506PMC
http://dx.doi.org/10.1111/1751-7915.70011DOI Listing

Publication Analysis

Top Keywords

deep-sea rhodococcus
8
nrps gene
8
gene clusters
8
integrated genome
4
genome metabolome
4
metabolome mining
4
mining unveiled
4
unveiled structure
4
structure biosynthesis
4
biosynthesis novel
4

Similar Publications

Integrated genome and metabolome mining unveiled structure and biosynthesis of novel lipopeptides from a deep-sea Rhodococcus.

Microb Biotechnol

November 2024

Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Giardini del Molosiglio, Naples, Italy.

Microbial biosurfactants have garnered significant interest from industry due to their lower toxicity, biodegradability, activity at lower concentrations and higher resistance compared to synthetic surfactants. The deep-sea Rhodococcus sp. I2R has been identified as a producer of glycolipid biosurfactants, specifically succinoyl trehalolipids, which exhibit antiviral activity.

View Article and Find Full Text PDF

Complete genome sequence of a novel sp. R16 isolate from deep-sea sediments in the western Pacific.

Front Genet

March 2024

Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China.

, a distinct genus separate from , has garnered attention for its adaptability and ecological versatility. In this study, a Gram-stain positive and ovoid-rod shaped the actinobacterium strain R16 was isolated from deep-sea sediment (with a depth of 6,310 m) in the Western Pacific. On the basis of 16S rRNA gene sequence analysis, average nucleotide identity and phylogenomic analysis, strain R16 clearly represents a novel species within the genus .

View Article and Find Full Text PDF

The deep-sea covers over 70% of the Earth's surface and harbors predominantly uncharacterized bacterial communities. Actinobacteria are the major prokaryotic source of bioactive natural products that find their way into drug discovery programs, and the deep-sea is a promising source of biotechnologically relevant actinobacteria. Previous studies on actinobacteria in deep-sea sediments were either regionally restricted or did not combine a community characterization with the analysis of their bioactive potential.

View Article and Find Full Text PDF

The present study aimed to characterize the bacterial community and functional diversity in co-composting microcosms of crude oil waste sludge amended with different animal manures, and to evaluate the scope for biostimulation based bioremediation. Gas chromatography-mass spectrometry (GC-MS) analyses revealed enhanced attenuation (>90%) of the total polyaromatic hydrocarbons (PAHs); the manure amendments significantly enhancing (up to 30%) the degradation of high molecular weight (HMW) PAHs. Microbial community analysis showed the dominance (>99% of total sequences) of sequences affiliated to phyla , , and The core genera enriched were related to hydrocarbon metabolism (, , , , , , , , and as).

View Article and Find Full Text PDF

Rausuquinone, a non-glycosylated pluramycin-class antibiotic from Rhodococcus.

J Antibiot (Tokyo)

February 2022

Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.

A new pluramycin-class polyketide, rausuquinone (1), and its known congener hydramycin (2) were isolated from the culture extract of the deep-sea water-derived Rhodococcus sp. RD015140. Compound 1 possesses a γ-pyrone-fused anthraquinone core with a 3-butene-1,2-diol side chain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!