Heteroatom-doped magneto-fluorescent carbon dots, a potent agent for multimodal imaging.

Sci Rep

Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.

Published: November 2024

A simple, one-pot and green method is reported for hydrothermal synthesis of highly fluorescent and magnetic carbon dots (CDs) by using D-glucose, as the carbon source. CDs were fully characterized by the UV-Vis and fluorescence spectroscopy, DLS, FTIR, TEM, EDS, XRD, and VSM. The nitrogen doping of different diamines significantly improved the fluorescence quantum yield (QY) of CDs with the maximum effect obtained by using m-phenylenediamine (mPDA). Temperature and reaction time also affected the QY of CDs with the best results obtained at 150 °C for 3 h. The heteroatom doping by innovative use of different metal sulfates including FeSO, MnSO, CuSO, MgSO, and ZnSO, further improved the optical properties of CDs. Interestingly, the magnetic and multicolor CDs with high colloidal stability and QYs of 17.7, 16.5, and 53.9% at 460, 490, and 515 nm, respectively, were synthesized by using 0.1 M of glucose, mPDA and MnSO. The resulted Mn-, S-, N-doped CDs represented rapid uptake and high-quality fluorescence imaging of the human fibroblast and umbilical vein endothelial cells in vitro, without significant toxicity. The CDs also displayed high r relaxivity of 32.3 mM s and were used for high-contrast MR and fluorescence imaging of mouse tumor models, in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586438PMC
http://dx.doi.org/10.1038/s41598-024-80531-xDOI Listing

Publication Analysis

Top Keywords

carbon dots
8
cds
8
fluorescence imaging
8
heteroatom-doped magneto-fluorescent
4
magneto-fluorescent carbon
4
dots potent
4
potent agent
4
agent multimodal
4
multimodal imaging
4
imaging simple
4

Similar Publications

Abdominal aortic aneurysm (AAA) is a cardiovascular disease with potentially fatal consequences, yet effective therapies to prevent its progression remain unavailable. Oxidative stress is associated with AAA development. Carbon dots have reactive oxygen species-scavenging activity, while green tea extract exhibits robust antioxidant properties.

View Article and Find Full Text PDF

Nanozymes, a revolutionary category of engineered artificial enzymes based on nanomaterials, have been developed to overcome the inherent limitations of natural enzymes, such as the high cost associated with storage and their fragility. Carbon dots (CDs) have emerged as compelling candidates for various applications due to their versatile properties. Particularly noteworthy are CDs with a range of surface functional groups that exhibit enzyme-like behavior, combining exceptional performance with catalytic capabilities.

View Article and Find Full Text PDF

Purpose: During fixed orthodontic treatment, oral hygiene is difficult to ensure and can easily lead to an imbalance in the oral micro-ecological balance. In this study, based on the adhesive properties of polydopamine (PDA) and the good antimicrobial and remineralization properties of carboxymethyl chitosan (CMC) and xylitol (Xy), new nanocomposites with both antimicrobial and remineralization capabilities were prepared to coat on orthodontic brackets.

Methods: Composite carbon dots (CDs) were synthesized using carboxymethyl chitosan and xylitol, we characterized them and the antimicrobial properties of the CMC-Xy-CDs were investigated by co-cultivation with S.

View Article and Find Full Text PDF

L-tryptophan carbon dots as a fluorescent probe for malachite green detection.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Electronics, School of Electrical and Electronics Engineering, SASTRA deemed to be University, Thanjavur 613401, India. Electronic address:

Development of a rapid and sensitive detection method for hazardous dyes attracts considerable research interest. In this work, L-Tryptophan-based Carbon dots were developed as a fluorescence sensor for the detection of Malachite green (MG). Green fluorescent L-Trp-C-dots were synthesized by a simple pyrolysis technique using L-Trp as the starting precursor.

View Article and Find Full Text PDF

Carbon dots (CDs) are versatile nanomaterials that are considered ideal for application in bioimaging, drug delivery, sensing, and optoelectronics owing to their excellent photoluminescence, biocompatibility, and chemical stability features. Nitrogen doping enhances the fluorescence of CDs, alters their electronic properties, and improves their functional versatility. N-doped CDs can be synthesized via solvothermal treatment of carbon sources with nitrogen-rich precursors; however, systematic investigations of their synthesis mechanisms have been rarely reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!