We study systems that approach a state possessing discrete symmetry due to different degenerate realizations for the system. For concreteness, we consider fractionally filled systems where degeneracy comes from the presence of identical sub-lattices. We show that such systems possess a new type of quasiparticles with fractional charges, which we refer to as fractyons. We discuss static and dynamic properties of these quasiparticles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586396 | PMC |
http://dx.doi.org/10.1038/s41598-024-78103-0 | DOI Listing |
Science
January 2025
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
Axions, hypothetical elementary particles that remain undetectable in nature, can arise as quasiparticles in three-dimensional crystals known as axion insulators. Previous implementations of axion insulators have largely been limited to two-dimensional systems, leaving their topological properties in three dimensions unexplored in experiment. Here, we realize an axion insulator in a three-dimensional photonic crystal and probe its topological properties.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Physics and Astronomy, Manchester University, Oxford Road, Manchester, M13 9PL, UK.
We study systems that approach a state possessing discrete symmetry due to different degenerate realizations for the system. For concreteness, we consider fractionally filled systems where degeneracy comes from the presence of identical sub-lattices. We show that such systems possess a new type of quasiparticles with fractional charges, which we refer to as fractyons.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Department of Physics, Emory University, 400 Dowman Drive, Atlanta, Georgia 30322, USA.
The discovery of fractional Chern insulators (FCIs) in twisted bilayer MoTe_{2} has sparked significant interest in fractional topological matter without external magnetic fields. Unlike the flat dispersion of Landau levels, moiré electronic states are influenced by lattice effects within a nanometer-scale superlattice. This Letter examines the impact of these lattice effects on the topological phases in twisted bilayer MoTe_{2}, uncovering a family of FCIs with Abelian anyonic quasiparticles.
View Article and Find Full Text PDFNat Commun
October 2024
Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
J Phys Condens Matter
September 2024
Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland.
A recent experiment revealed an unexpected FQHE at filling fraction 3/4 in a GaAs 2D hole system, which contradicts the composite fermion model prediction and the observation of a compressible Hall metal-type state in a twin 2D electron system in GaAs at the same filling fraction 3/4 at almost same other conditions. This finding challenges conventional effective single-quasiparticle model for FQHE exposing its limitations. We explain this experimental observation within a multiparticle approach based on a topological cyclotron commensurability criterion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!