Lactate measurements provide an opportunity to conveniently evaluate bodily functions and sports performance. A molecularly imprinted fluorescence biochip provides an innovative way to achieve lactate measurement and overcomes the limitations of enzyme-based sensors. To realize this goal, ZnO quantum dots (QDs), a biocompatible sensing material, were combined with selective receptors comprised of molecularly imprinted polymers (MIPs). The lactate-selective imprinted polymers were formed using 3-aminopropyltriethoxysilane (APTES) and 5-indolyl boronic acid monomers. Furthermore, a new solid-phase sensing platform that overcomes the limitations of liquid-based sensors was developed to detect lactate in real-time. The platform consists of the biosensor chip with a thin-film sensing layer, an ultraviolet (UV) excitation source, and a portable light detector. The final sensor has a sensitivity of 0.0217 mmol L for 0-30 mmol L of lactate in phosphate-buffered saline (PBS) with a correlation coefficient of 0.97. The high sensor sensitivity and selectivity demonstrates the applicability of the ZnO QDs and synthetic receptors for sweat analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586410 | PMC |
http://dx.doi.org/10.1038/s41378-024-00803-4 | DOI Listing |
Biosens Bioelectron
December 2024
Cnam, SATIE Laboratory, UMR, CNRS 8029, 292 rue Saint Martin, 75003, Paris, France. Electronic address:
This study aims to demonstrate that redox couples, regardless of their electrical charges, are unnecessary for detecting and quantifying electroactive proteins using an electrochemical sensor functionalized with a molecularly imprinted polymer. Our approach involved designing a polydopamine imprinted biosensor for detecting bovine serum albumin as the model protein. Electrochemical measurements were conducted in a phosphate-buffered solution (PBS) and solutions containing the negatively charged hexacyanoferrate, the neutral ferrocene, or the positively charged hexaammineruthenium (III) probes.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Department of Chemistry "Ugo Schiff', University of Florence, Via della Lastruccia, 3-13, 50019, Sesto Fiorentino, Italy. Electronic address:
Bio-Layer Interferometry (BLI) has emerged as a versatile technique in affinity-based biosensing, analogous to Surface Plasmon Resonance. BLI enables real-time, label-free detection, and quantification of biomolecular interactions between an immobilized receptor and an analyte in solution. The BLI sensor comprises an optical fiber with an internal reference layer at the end and an external biocompatible layer where biological receptors are immobilized and exposed to the solution.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep 27000, Turkey.
Surface plasmon resonance (SPR) sensors have emerged as a powerful tool in biosensing applications due to their ability to provide sensitive and real-time detection of chemical and biological analytes. This review focuses on the development and application of molecularly imprinted polymer (MIP)-based SPR sensors for food analysis. By combining the high selectivity of molecular imprinting techniques with the sensitivity of SPR, these sensors offer significant advantages in detecting food contaminants and other target molecules.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea. Electronic address:
Creatinine (Ctn) is a biomarker for chronic kidney disease (CKD). In this study, a highly sensitive and specific detection method for Ctn based on a molecularly imprinted polymer (MIP) based electrochemical biosensor was developed. Mxene (Mx), which has high absorption properties, was modified using carbon screen-printed electrodes (SPCE).
View Article and Find Full Text PDFFood Chem
December 2024
Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China. Electronic address:
A molecularly imprinted fluorescent aptasensor was designed for selective detection of quinine (Qn) based on dual functional monomers. In the sol-gel polymerization of molecularly imprinted polymers (MIPs), 3-aminopropyltriethoxysilane (APTES) and quinine aptamer (Apt) were employed as dual functional monomers, and Qn was the template molecule. Near-infrared carbon dots (RCDs) were used as fluorescence signal probe, and effectively avoided the interference of fluorescence emitted by Qn.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!