NKG2C Sequence Polymorphism Modulates the Expansion of Adaptive NK Cells in Response to Human CMV.

HLA

Immunogenetics & Histocompatibility Lab, Instituto de Investigación Sanitaria Puerta de Hierro - Segovia de Arana, Majadahonda, Spain.

Published: November 2024

A subpopulation of NK cells with distinctive phenotype and function differentiates and expands specifically in response to infection by human cytomegalovirus (HCMV). A hallmark of these adaptive NK cells is their increased expression levels of the activating CD94/NKG2C receptor for HLA-E, and lack of expression of its inhibitory homologue CD94/NKG2A. Their frequency is highly variable in HCMV individuals, and the basis for such differences is only partially understood. Here, we explore the possible influence of sequence polymorphism of the NKG2C (or KLRC2) gene on the expansion of NKG2CNKG2A NK cells in healthy HCMV-seropositive donors. Our results show a significant association of greater proportions of adaptive NK cells with allele NKG2C*02. This is defined by two amino acid substitutions in comparison with the most prevalent allele, NKG2C*01, and associates with additional sequence polymorphisms in noncoding regions. Furthermore, we demonstrate consistently higher mRNA levels of NKG2C*02 in heterozygous individuals co-expressing this allele in combination with NKG2C*01 or *03. This predominance is independent of polymorphisms in the promoter and 3' UTRs and is appreciated also in HCMV-seronegative donors. In summary, although additional factors are most likely implicated in the variable expansion of NKG2CNKG2A NK cells in response to HCMV, our results demonstrate that host immunogenetics, in particular NKG2C diversity, influences the magnitude of such response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586157PMC
http://dx.doi.org/10.1111/tan.15764DOI Listing

Publication Analysis

Top Keywords

adaptive cells
12
sequence polymorphism
8
cells response
8
expansion nkg2cnkg2a
8
nkg2cnkg2a cells
8
cells
6
nkg2c sequence
4
polymorphism modulates
4
modulates expansion
4
expansion adaptive
4

Similar Publications

Neurotransmitters are released from synaptic vesicles with remarkable precision in response to presynaptic calcium influx but exhibit significant heterogeneity in exocytosis timing and efficacy based on the recent history of activity. This heterogeneity is critical for information transfer in the brain, yet its molecular basis remains poorly understood. Here, we employ a biochemically-defined fusion assay under physiologically relevant conditions to delineate the minimal protein machinery sufficient to account for various modes of calcium-triggered vesicle fusion dynamics.

View Article and Find Full Text PDF

Malate initiates a proton-sensing pathway essential for pH regulation of inflammation.

Signal Transduct Target Ther

December 2024

Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China.

Metabolites can double as a signaling modality that initiates physiological adaptations. Metabolism, a chemical language encoding biological information, has been recognized as a powerful principle directing inflammatory responses. Cytosolic pH is a regulator of inflammatory response in macrophages.

View Article and Find Full Text PDF

A high-protein diet-responsive gut hormone regulates behavioral and metabolic optimization in Drosophila melanogaster.

Nat Commun

December 2024

Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan.

Protein is essential for all living organisms; however, excessive protein intake can have adverse effects, such as hyperammonemia. Although mechanisms responding to protein deficiency are well-studied, there is a significant gap in our understanding of how organisms adaptively suppress excessive protein intake. In the present study, utilizing the fruit fly, Drosophila melanogaster, we discover that the peptide hormone CCHamide1 (CCHa1), secreted by enteroendocrine cells in response to a high-protein diet (HPD), is vital for suppressing overconsumption of protein.

View Article and Find Full Text PDF

Human ANP32A/B are SUMOylated and utilized by avian influenza virus NS2 protein to overcome species-specific restriction.

Nat Commun

December 2024

State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China.

Human ANP32A/B (huANP32A/B) poorly support the polymerase activity of avian influenza viruses (AIVs), thereby limiting interspecies transmission of AIVs from birds to humans. The SUMO-interacting motif (SIM) within NS2 promotes the adaptation of AIV polymerase to huANP32A/B via a yet undisclosed mechanism. Here we show that huANP32A/B are SUMOylated by the E3 SUMO ligase PIAS2α, and deSUMOylated by SENP1.

View Article and Find Full Text PDF

Based on the success of cancer immunotherapy, personalized cancer vaccines have emerged as a leading oncology treatment. Antigen presentation on MHC class I (MHC-I) is crucial for the adaptive immune response to cancer cells, necessitating highly predictive computational methods to model this phenomenon. Here, we introduce HLApollo, a transformer-based model for peptide-MHC-I (pMHC-I) presentation prediction, leveraging the language of peptides, MHC, and source proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!