A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced phosphorus bioavailability and reduced water leachability in dairy manure through hydrothermal carbonization: effect of processing temperature and CaO additive. | LitMetric

Dairy manure, a significant source of phosphorus (P), can potentially cause environmental risk due to P runoff when dairy manure is directly applied to cropland. Thus, there is an increasing interest in mitigating P loss from manure prior to land applications. This study aimed to investigate the potential of hydrochar produced by hydrothermal carbonization (HTC) for P recycling from dairy manure with and without the addition of CaO, focusing on the plant bioavailability, stabilization, and transformation of P in the resultant hydrochar. Hydrochar was prepared under different temperatures (180-240°C). The effect of CaO addition (0-10% of raw manure on dry wt. basis) was also evaluated at 220°C. Results showed that water-soluble P (WSP), a key indicator of P runoff loss, was significantly reduced in hydrochar, particularly with CaO addition. In addition, the plant available P in hydrochar increased with HTC temperature increase till 220°C, which accounted for ∼90% of total P content, then decreased with temperatures higher than 220°C. The addition of CaO slightly reduced plant bioavailability when compared to hydrochar produced at 220°C without additive. The P fractionation and speciation analyses indicated the transformation of P into Ca-associated apatite P. Hydrochar produced at 220°C with 10% CaO addition resulted in a high P recovery (∼85%) and a reduced runoff risk by 97%. The results demonstrate the efficacy of P recycling through hydrochar produced from dairy manure through HTC, which offers a sustainable approach to managing dairy waste while mitigating the potential environmental risks of P runoff.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2024.2430802DOI Listing

Publication Analysis

Top Keywords

dairy manure
20
hydrochar produced
16
cao addition
12
hydrothermal carbonization
8
hydrochar
8
addition cao
8
plant bioavailability
8
produced 220°c
8
manure
7
dairy
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!