Benzo(a)pyrene degradation by the interaction of and in wastewater: optimisation and kinetic response.

Environ Technol

School of Civil Engineering, College of Engineering, Universiti Teknologi MARA, Selangor, Malaysia.

Published: November 2024

Benzo(a)pyrene (BaP) is a well-known environmental contaminant that poses significant risks due to its carcinogenic nature and it is crucial to remove it from the environment, especially in wastewater. Thus, this study aims to enhance the degradation of BaP in wastewater through the optimised interaction of the fungus and the bacterium . The ideal initial pH and temperature ranges for optimising BaP breakdown were determined using response surface methodology (RSM). For that, the range of initial pH chosen was pH 4-9 and the temperature was between 25℃ - 40℃. The first-order kinetic was used to determine the kinetic response for monoculture and co-culture. The co-culture of and successfully produced a BaP removal rate of over 50%, which was much higher than the removal rates observed in monoculture treatments under optimisation conditions. The kinetic response was obtained with 0.067 d (), 0.127 d () and 0.144 d (co-culture) for the degradation rate constant, K. The degradation half-life time, t shows the decrement for the co-culture (4.83 days) compared to monoculture. The increased degradation has been attributed to the synergistic biochemical pathways, in which fungal ligninolytic enzymes initiate the breakdown of BaP, followed by bacterial degradation of the resulting compounds. The study's results, which have been validated by Analysis of Variance (ANOVA), offer insightful information for the enhancement of bioremediation strategies. This information is practicable for researchers, practitioners, and policymakers in the context of addressing carcinogenic pollutants in wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2024.2428442DOI Listing

Publication Analysis

Top Keywords

kinetic response
12
bap
5
degradation
5
benzoapyrene degradation
4
degradation interaction
4
wastewater
4
interaction wastewater
4
wastewater optimisation
4
kinetic
4
optimisation kinetic
4

Similar Publications

A Supramolecular Fluorescent Chemosensor Enabling Specific and Rapid Quantification of Norepinephrine Dynamics.

J Am Chem Soc

January 2025

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China.

Host-guest supramolecular fluorescence probes have garnered significant attention in the detection and sensing of bioactive molecules due to their functionalization potential, adjustable physical properties, and high specificity. However, such probes that reliably, rapidly, and specifically measure neurotransmitter dynamics at the cellular and in vivo level have yet to be reported. Herein, we present a supramolecular fluorescent chemosensor designed for norepinephrine (NE) detection, showing an exceptional response and specificity through host-guest complexation.

View Article and Find Full Text PDF

Background: HCV genotypes are 30-35% polymorphic at the nucleotide level, while subtypes within the same genotype differ by nearly 20%. Although previous studies have shown the immune escape potential of several mutations within the HCV proteins, little is known about the effect of genotype/subtype-specific gene polymorphism on T-cell immunity. Therefore, this study employed several methods to examine the impact of genotype/subtype-specific polymorphisms in Core, NS3, NS5A, and NS5B sequences on T cell epitope processing and HLA-epitope interactions.

View Article and Find Full Text PDF

Anti-inflammatory coupled anti-angiogenic airway stent effectively suppresses tracheal in-stents restenosis.

J Nanobiotechnology

January 2025

Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.

Excessive vascularization during tracheal in-stent restenosis (TISR) is a significant but frequently overlooked issue. We developed an anti-inflammatory coupled anti-angiogenic airway stent (PAGL) incorporating anlotinib hydrochloride and silver nanoparticles using advanced electrospinning technology. PAGL exhibited hydrophobic surface properties, exceptional mechanical strength, and appropriate drug-release kinetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!