Precipitation polymerization method was used to synthesize chitosan based poly[chitosan-N-isopropylmethacrylamide-acrylic acid] [P(CS-NI-AA)] microgel particles. Synthesized P(CS-NI-AA) microgel particles were utilized as micro-reactors for the fabrication of silver nanoparticles (AgNPs) inside the structure of microgels through chemical reduction of Ag ions using NaBH as reducing agent. P(CS-NI-AA) and Ag-P(CS-NI-AA) systems were analyzed using various characterization techniques like scanning electron microscopy (SEM), ultraviolet-visible (UV-visible) spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Catalytic activity of Ag-P(CS-NI-AA) for individual and simultaneous degradation of various dyes like methylene blue (MB), Congo red (CR), brilliant blue (Bb), methyl orange (MO) and Rhodamine B (RB) was investigated in aqueous phase using NaBH as reductant. The Pseudo 1st order rate constant (k) for dyes degradation were evaluated. The Ag-P(CS-NI-AA) hybrid system was observed to be efficient, low-cost and stable catalyst for quick degradation of dyes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.137965DOI Listing

Publication Analysis

Top Keywords

degradation dyes
12
silver nanoparticles
8
chitosan based
8
microgel particles
8
electron microscopy
8
catalytic degradation
4
dyes
4
dyes silver
4
nanoparticles fabricated
4
fabricated chitosan
4

Similar Publications

In the present study, a norfloxacin (NFX) fluorescent probe was tailored for the spectrofluorometric measurement of cefepime (CFP). The proposed approach measured the quenching effect of CFP on the fluorescence intensity of NFX in acetate buffer solution. The obtained results show that CFP strongly quenches the fluorescence of NFX in a static mechanism.

View Article and Find Full Text PDF

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/locate/withdrawalpolicy).

View Article and Find Full Text PDF

High performance ozone nanobubbles based advanced oxidation processes (AOPs) for degradation of organic pollutants under high pollutant loading.

J Environ Manage

January 2025

Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12 Str., 80-233, Gdansk, Poland; School of Civil, Environmental, and Architectural Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea. Electronic address:

Advanced Oxidation Processes (AOPs) have proven to be an effective solution for chemical wastewater treatment, particularly for degradation of organic pollutants, especially dyes. Ozonation is recognized as one of the most prevalent AOPs. Nevertheless, some cases show a lowered efficiency of O utilization which is attributed to its inadequate distribution in the treated water causing low residence time, low mass transfer coefficient as well as shorter half-life.

View Article and Find Full Text PDF

Advancements in iron-based photocatalytic degradation for antibiotics and dyes.

J Environ Manage

January 2025

School of Resources and Environmental Engineering, Shanghai Polytechnic University, No. 2360 Jinhai Road, Shanghai, 201209, PR China.

The accelerated growth of the economy and advancements in medical technology have led to the discharge of a diverse range of organic pollutants into water sources. Recent investigations into water treatment have demonstrated the potential for integrating photocatalysis with techniques such as photocatalytic persulfate activation and the Photo-Fenton process for more efficient wastewater management. Iron-based photocatalysts responsive to visible light offer several advantages, including non-toxicity, safety, affordability, and excellent chemical and optical properties.

View Article and Find Full Text PDF

A Multifunctional Synergistic Solar-Driven Interfacial Evaporator for Desalination and Photocatalytic Degradation.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China.

The scarcity of freshwater resources and the treatment of dye wastewater have emerged as unavoidable challenges that need to be addressed. The combination of solar-driven interfacial evaporation, photocatalytic degradation, and superhydrophobic surface provides an effective approach for seawater desalination and the treatment of organic dyes. In this study, we fabricated a multifunctional synergistic solar evaporator by depositing cupric oxide nanoparticles onto polypyrrole (PPy) coating and subsequently modified it with a hydrophobic agent successfully.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!