Overproduction of uric acid caused by increased expression and/or enhanced activity of xanthine oxidase (XO) is one of the major etiologies of hyperuricemia, which had a significant sex differences. As an important enzyme involved in production of reactive oxygen species and uric acid, activity of XO is highly correlated with hyperuricemia and its complications. However, the mechanisms underlying XO dysregulation remain unclear, and sex difference in the prevalence of hyperuricemia has been well known. To explore the potential role of intestinal farnesoid X receptor (FXR) on XO regulation and production, and the mechanisms of sex differences in this pathological process. Two hundred and sixty-one dyslipidemia participants and intestine-specific FXR-knockout mice were used to study the relationship between the intestinal FXR and the serum uric acid level. Western blotting, quantitative real-time PCR, and dual-luciferase reporter assay, were applied to clarify the regulatory role of FXR deficiency on XO. Special inhibitors, agonists, siRNA, sex hormones were used to investigate the mechanism of sex difference in FXR deficiency induced hyperuricemia in cell and animal model. Serum fibroblast growth factor 19 (FGF19) levels were lower in hyperuricemia patients in a sex difference manner. Increased local TNFα level driven by intestinal FXR deficiency/inhibition induced overexpression and hyperactivity of intestinal XO, leading to elevated intestinal uric acid synthesis, and subsequently resulting in hyperuricemia. We found that estrogens inhibited XO expression and activity, whereas androgens enhanced XO activity, leading to the sex difference in FXR deficiency induced hyperuricemia. Infliximab treatment eliminated the sex difference in uric acid levels in intestinal FXR-knockout mice. This study demonstrated the role of intestinal FXR in the pathogenesis of hyperuricemia, and partially elucidated the mechanisms underlying the sex differences of hyperuricemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2024.11.040 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!