A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization of a Mycoplasma hyopneumoniae aerosol infection model in pigs. | LitMetric

Characterization of a Mycoplasma hyopneumoniae aerosol infection model in pigs.

Vet Microbiol

Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA; Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA; Swine Disease Eradication Center, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA. Electronic address:

Published: December 2024

AI Article Synopsis

  • - The study aimed to create a model to understand how Mycoplasma hyopneumoniae causes respiratory disease in pigs, focusing on its effects on infection, immune response, and disease progression.
  • - Four groups of pigs were exposed to different aerosol doses of the bacteria, with secretions collected and analyzed at various time points to assess infection and immune response.
  • - Findings indicated that all pigs became infected regardless of the dose, but only high-dose exposures led to severe clinical symptoms and lung damage, demonstrating the model's potential for testing treatments and prevention strategies.

Article Abstract

The purpose of the present study was to develop and characterize an experimental aerosol model for Mycoplasma hyopneumoniae (M. hyopneumoniae) infection and respiratory disease in pigs. The experiment was carried out to determine the pathogenicity, colonization, mucosal immune response, and clinical course of disease of dose-controlled aerosols of M. hyopneumoniae. Four groups of three M. hyopneumoniae-free gilts each were individually exposed to aerosols of diluted lung homogenate containing M. hyopneumoniae strain 232 in a chamber. Each group was exposed to different doses of viable organisms (10 to 10 color changing units/mL during 15-20 or 30-35 min in two consecutive days). Nasal, laryngeal, and deep-tracheal secretions were collected from each gilt at 0, 7, 14, 21, and 28 days post-exposure (dpe). Blood samples were collected at 0 and 28 dpe. At necropsy, lung lesions were assessed, and bronchial secretions and bronchoalveolar lavage fluid (BALF) were collected from each lung set. Blood was used to assess seroconversion by means of an indirect ELISA, while BALF, deep-tracheal and nasal secretions were tested by modifying the ELISA to evaluate mucosal IgG and IgA production. Nasal, laryngeal, deep-tracheal, and bronchial secretions were tested by real-time PCR to evaluate bacterial load. Gilts became infected irrespective of the infectious dose, as determined by M. hyopneumoniae detection in deep-tracheal secretions from all gilts at 7 dpe. A specific local humoral immune response starting at 14 dpe was detected in all gilts. While all experimental groups presented gilts with some extent of mycoplasmal pneumonia, only the exposure of gilts to high-dose aerosols consistently reproduced typical clinical signs and severe lung lesions. These results showed that the reproduction of mycoplasmal pneumonia by means of infectious aerosols can be successfully achieved at experimental level, making this model a valuable alternative to evaluate preventive and treatment measures against M. hyopneumoniae.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2024.110296DOI Listing

Publication Analysis

Top Keywords

mycoplasma hyopneumoniae
8
immune response
8
nasal laryngeal
8
laryngeal deep-tracheal
8
deep-tracheal secretions
8
lung lesions
8
bronchial secretions
8
secretions tested
8
mycoplasmal pneumonia
8
hyopneumoniae
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!