Interleukin-6 (IL-6) is a crucial cytokine involved in inflammation and immune regulation. However, the detection of IL-6 with ultrasensitivity and high specificity remains a significant challenge due to the inherent complexity of biofluids. Herein, we present a digital surface enhanced Raman scattering (SERS) immunoassay using core-shell Au@Ag-Au nanotags for IL-6 detection with ultrasensitivity and high reliability. A low-cost silicon chip was functionalized as capture substrates, employing novel SERS nanotags that exhibit strong, robust and reproducible signals at single-nanoparticle resolution as the amplification element. We proposed two analytical methods to validate single-molecule events follow a Poisson distribution and to quantify protein biomarkers over a broad linear dynamic range, respectively. The strong alignment between theoretical and experimental results enhances the method's reliability. Our assay provides two readouts: colorimetric analysis by naked eyes for high concentrations (>1 ng/mL) and digital SERS analysis for low concentrations. Following method optimization, we obtained a linear range from 100 fg/mL to 1 ng/mL (R = 0.994) with a limit of detection (LOD) of 12.4 fg/mL, suitable for clinical applications. The method was tested for IL-6 quantification in healthy human serum and saliva, with recoveries from 92.4% to 105.3%. Finally, the immunoassay demonstrated strong consistency with the standard clinical laboratory method when tested with clinical serum samples. Thus, our proposed the digital SERS immunoassay is a promising tool for the precision clinical diagnosis of IL-6-related diseases or other conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2024.116973 | DOI Listing |
Biosens Bioelectron
December 2024
Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China; Chongqing Institute of Microelectronics and Microsystems, Beijing Institute of Technology, Beijing, 100081, PR China; Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 1000815, PR China. Electronic address:
This study introduces an advanced bioanalytical platform that combines digital microfluidics (DMF) with Raman spectroscopy, effectively addressing common issues in bioanalysis such as sample contamination, excessive consumption of samples and reagents, and manual handling. Our innovative system is engineered to handle diverse sample types and enables both sample preparation and in-situ analysis on a single device, utilizing less than 5 μL of samples and reagents. It incorporates a Translucent Raman Enhancement Stack (TRES) sensor, which boosts the detection signal, and includes droplet-driving functionality for automated processing of complex samples in a compact setting.
View Article and Find Full Text PDFBiosens Bioelectron
November 2024
State Key Laboratory of Digital Medical Engineering, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210096, China; State Key Laboratory of Digital Medical Engineering, School of Electronic Science and Engineering, Southeast University, Nanjing, 211189, China. Electronic address:
Surface-enhanced Raman scattering (SERS) shows great promise for early diagnosis due to its high specificity and rapid detection capabilities. However, its application is often hindered by substrate instability and insufficient interaction between the substrate and incident light. To address these challenges, a photonic-plasmonic strategy is often employed to enhance sensing performance but it is generally limited by the low efficiency of plasmonic metal and optical cavity resonances.
View Article and Find Full Text PDFBiosens Bioelectron
February 2025
State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China; Southeast University Shenzhen Research Institute, Shenzhen, 518000, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, 215163, China. Electronic address:
Interleukin-6 (IL-6) is a crucial cytokine involved in inflammation and immune regulation. However, the detection of IL-6 with ultrasensitivity and high specificity remains a significant challenge due to the inherent complexity of biofluids. Herein, we present a digital surface enhanced Raman scattering (SERS) immunoassay using core-shell Au@Ag-Au nanotags for IL-6 detection with ultrasensitivity and high reliability.
View Article and Find Full Text PDFChem Soc Rev
November 2024
School of Chemistry and Chemical Engineering, Queen's University Belfast, BT9 5AG, Belfast, UK.
Many of the features of SERS, such as its high sensitivity, molecular specificity and speed of analysis make it attractive as an analytical technique. However, SERS currently remains a specialist technique which has not yet entered the mainstream of analytical chemistry. Therefore, this review draws out the underlying principles for analytical SERS and provides practical tips and tricks for SERS quantitation.
View Article and Find Full Text PDFACS Sens
November 2024
College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China.
In this study, we developed a novel digital surface-enhanced Raman spectroscopy (SERS) chip that integrates an inverted pyramid microcavity array, a microchannel cover plate, and a multilayer gold nanoparticle (AuNP) SERS substrate. This innovative design exploits the synergistic effects of the microcavity array and the microchannel to enable rapid and large-scale digital discretization of bacterial suspensions. The concentration effect of the picoliter cavities, combined with the superior Raman enhancement effect of the multilayer AuNP SERS substrate, allows for the precise identification of live bacteria within the microcavities through in situ and label-free SERS testing after a short incubation period.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!