This research examined the varying susceptibility of pure copper (Cu), 90/10 copper-nickel (Cu-Ni) alloy, 70/30 Cu-Ni alloy, and pure nickel (Ni) to microbiologically influenced corrosion (MIC) induced by Desulfovibrio vulgaris, with a focus on the elemental composition of the materials. The results revealed a progressive shift in MIC behavior across these metals and alloys, with increased corrosion severity observed as Ni content decreased. Element Ni improved the corrosion resistance of the alloy while also preventing the growth of microorganisms. Both planktonic and sessile cell counts decreased as the Ni content increased. The corrosion rate, determined by weight loss, followed this order: pure Cu (25.7 ± 3.8 mg·cm, 0.75 mm·y) > 90/10 Cu-Ni alloy (9.1 ± 1.4 mg·cm, 0.27 mm·y) > 70/30 Cu-Ni alloy (4.3 ± 0.8 mg·cm, 0.16 mm·y) > pure Ni (2.1 ± 0.7 mg·cm, 0.06 mm·y). The corrosion current density (i) of pure Cu (3.03 × 10 A·cm) was approximately 20-fold that of pure Ni (1.54 × 10 A·cm). There was a correlation between the electrochemical and weight loss results. Thermodynamic analysis and experimental results indicated that M-MIC was the primary MIC mechanism for pure Cu. While both M-MIC and EET-MIC were engaged in the MIC mechanisms of 90/10 Cu-Ni and 70/30 Cu-Ni alloys, the predominant mechanism was EET-MIC for pure Ni.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioelechem.2024.108854 | DOI Listing |
Inorg Chem
December 2024
Division Surface and Corrosion Science, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden.
Nanomaterials are vital in catalysis, sensing, energy storage, and biomedicine and now incorporate multiprincipal element materials to meet evolving technological demands. However, achieving a uniform distribution of multiple elements in these nanomaterials poses significant challenges. In this study, various Cu-Ni compositions were used as a model system to investigate the formation of bimetallic nanoparticles by employing computer simulation molecular dynamics methods and comparing the results with observations from solution-combustion-synthesized materials of the same compositions.
View Article and Find Full Text PDFHeliyon
November 2024
Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Ave. Eugenio Garza Sada 2501 Sur, Col. Tecnológico, Monterrey, 64700, N.L., Mexico.
Novel copper-nickel matrix composites reinforced with silicon carbide (SiC) micro particles for metal contact applications were manufactured by powder metallurgy technology and were experimentally characterized. Cu and Cu alloys are commonly used as metal contact for either vacuum, oil, or SF6 in low-voltage circuit breaker devices, but their application in environments with the presence of oxygen is limited due to their tendency to form high-resistance copper oxides. Thus, the addition of Ni as an alloying element provides resistance to both humidity and several corrosive environments and increases the composites' hardness, mechanical strength, and wear resistance.
View Article and Find Full Text PDFRSC Adv
November 2024
Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang Bangkok 10520 Thailand +66-2-324-8000.
Materials (Basel)
November 2024
State Key Laboratory of Nonferrous Metals and Processes, GRINM Group Co., Ltd., Beijing 100088, China.
Materials (Basel)
November 2024
State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China.
Welded cable composed of nickel-chromium (Ni-Cr) alloy and copper is a crucial component in the resistance heating technology used for heavy oil production. Tungsten inert gas (TIG) welding was employed to join the copper and Ni-Cr alloy using copper filler wire, and the stability of the welded joint was analyzed under high-temperature service conditions. We examined the changes in the microstructure and properties of the welded joint after postweld heat treatment (PWHT) at 600 °C for 3, 6, and 12 days.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!