A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Polyvinylidene fluoride binder removal through subcritical methanol for efficient liberation of cathode materials from lithium-ion batteries. | LitMetric

Polyvinylidene fluoride binder removal through subcritical methanol for efficient liberation of cathode materials from lithium-ion batteries.

Waste Manag

State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China. Electronic address:

Published: January 2025

Polyvinylidene fluoride (PVDF) binder removal is critical for the recovery of valuable metal materials during the treatment of spent lithium-ion batteries (LIBs). This study proposed a new PVDF removal method through subcritical methanol extraction. The optimal conditions and mechanism of the method for the liberation of cathode materials were explored, and the recovered cathode materials, aluminum foils (Al foils), and extracted binder were characterized. Experimental results on actual cathode sheets show that under the extraction temperature of 200 °C, after holding and stirring time for 10 min, the cathode materials were recovered in the form of powder with an exfoliation efficiency of 98.51 % from Al foil without any damage. The removal efficiency of PVDF reached 78.74 wt% while the crystal structure of LiMnO remained intact. Compared with the new binder, the recovered PVDF (R-PVDF) has a similar glass transition temperature and melting point but presents a more intricate surface morphology, lower crystallinity, and higher proportion α-phase crystallin. The results indicate that R-PVDF has the potential to be reused as a new binder in LIBs. This study aims to provide a new efficient and environmentally friendly solution for the recycling of spent LIBs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2024.11.026DOI Listing

Publication Analysis

Top Keywords

cathode materials
16
polyvinylidene fluoride
8
binder removal
8
subcritical methanol
8
liberation cathode
8
lithium-ion batteries
8
libs study
8
binder
5
cathode
5
materials
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!