Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Effectively controlling the electronic configuration of metal sites within single-atom catalysts (SACs) is essential for improving their oxygen reduction reaction (ORR) performance. Here, we construct hybrid catalysts featuring Fe single atoms and FeO clusters (Fe SACs/FeO@NHPC) to realize highly efficient ORR. Specifically, the Fe SACs/FeO@NHPC delivers a remarkable half-wave potential (E) of 0.893 V and endures 30,000 cycles with only 12 mV E loss in alkaline media. Liquid zinc-air batteries (ZABs) utilizing Fe SACs/FeO@NHPC output a power density of 192.7 mW cm and demonstrate rechargeability over 370 h without noticeable voltage degradation. Furthermore, theoretical calculations indicate that the axially coordinated FeO clusters significantly promote electronic delocalization in the 3d orbitals of the Fe sites. This electronic structure regulation strategy optimizes the hybridization between Fe-3d orbitals and O-2p orbitals, thereby facilitating the *OH dissociation process. This research not only provides intensive insight into the synergistic interactions and complementary effects between single-atom sites and clusters in hybrid catalysts but also lays the groundwork for designing SACs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.11.131 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!