A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dealing with Missing Angular Sections in NanoCT Reconstructions of Low Contrast Polymeric Samples Employing a Mechanical In Situ Loading Stage. | LitMetric

While in situ experiments are gaining importance for the (mechanical) assessment of metamaterials or materials with complex microstructures, imaging conditions in such experiments are often challenging. The lab-based computed tomography system Xradia 810 Ultra allows for the in situ (time-lapsed) mechanical testing of samples. However, the in situ loading setup of this system limits the image acquisition angle to 140°. For low contrast polymeric materials, this limited acquisition angle leads to regions of low information gain, thus preventing an accurate reconstruction of the data using a filtered back projection algorithm resulting in erroneous microstructures. Here, we demonstrate how the information gain can be improved by selecting an appropriate position of the sample. A low contrast polymeric tetrahedral microlattice sample and a structured sample with specific markers, both scanned over 140° and 180°, demonstrate that the missing structural details in the 140° reconstruction are limited to an angular wedge of about 20°. Depending on the sample geometry and microstructure, applying simple strategies for the in situ experiments allows accurate reconstruction of the data. For the tetrahedral microlattice, a simple rotation of the sample by 90° rotates all relevant surfaces by about 30° to the original illumination direction, creating a more even X-ray illumination for all the projections, thus providing enough X-ray absorption for an accurate reconstruction of the geometry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.24746DOI Listing

Publication Analysis

Top Keywords

low contrast
12
contrast polymeric
12
accurate reconstruction
12
situ loading
8
situ experiments
8
acquisition angle
8
reconstruction data
8
tetrahedral microlattice
8
situ
5
sample
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!