Mesenchymal stromal cells can block palmitate training of macrophages via cyclooxygenase-2 and interleukin-1 receptor antagonist.

Cytotherapy

Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland; Department of Biology, Maynooth University, Maynooth, Ireland. Electronic address:

Published: February 2025

Innate training of macrophages can be beneficial for the clearance of pathogens. However, for certain chronic conditions, innate training can have detrimental effects due to an excessive production of pro-inflammatory cytokines. Obesity is a condition that is associated with a range of increased pro-inflammatory training stimuli including the free fatty acid palmitate. Mesenchymal stromal cells (MSCs) are powerful immunomodulators and known to suppress inflammatory macrophages via a range of soluble factors. We show that palmitate training of murine bone-marrow-derived macrophages and human monocyte-derived macrophages (MDMs) results in an increased production of TNFα and IL-6 upon stimulation with lipopolysaccharide and is associated with epigenetic remodeling. Palmitate training led to metabolic changes, however, MSCs did not alter the metabolic profile of human MDMs. Using a transwell system, we demonstrated that human bone marrow MSCs block palmitate training in both murine and human macrophages suggesting the involvement of secreted factors. MSC disruption of the training process occurs through more than one pathway. Suppression of palmitate-enhanced TNFα production is associated with cyclooxygenase-2 activity in MSCs, while secretion of interleukin-1 receptor antagonist by MSCs is required to suppress palmitate-enhanced IL-6 production in MDMs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcyt.2024.10.011DOI Listing

Publication Analysis

Top Keywords

palmitate training
16
mesenchymal stromal
8
stromal cells
8
block palmitate
8
training
8
training macrophages
8
interleukin-1 receptor
8
receptor antagonist
8
innate training
8
training murine
8

Similar Publications

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent hepatic disorder worldwide. Arachidonic acid 15-lipoxygenase (ALOX15), an enzyme catalyzing the peroxidation of polyunsaturated fatty acids, plays a crucial role in various diseases. Here, we sought to investigate the involvement of ALOX15 in MASLD.

View Article and Find Full Text PDF

Introduction: Neonatal seizures are the most common clinical manifestation of neurological dysfunction in newborns, with an incidence ranging from 1 to 5‰. However, the therapeutic efficacy of current pharmacological treatments remains suboptimal. This study aims to utilize genetically modified hamsters with hypertriglyceridaemia (HTG) to investigate the effects of elevated triglycerides on neuronal excitability and to elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Microenvironment-induced programmable nanotherapeutics restore mitochondrial dysfunction for the amelioration of non-alcoholic fatty liver disease.

Acta Biomater

January 2025

Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China. Electronic address:

Nonalcoholic fatty liver disease (NAFLD) is a metabolic liver disorder with severe complications. Mitochondrial dysfunction due to over-opening of the mitochondrial permeability transition pore (mPTP) in liver cells plays a central role in the development and progression of NAFLD. Restoring mitochondrial function is a promising strategy for NAFLD therapy.

View Article and Find Full Text PDF

Inhibited peroxidase activity of peroxiredoxin 1 by palmitic acid exacerbates nonalcoholic steatohepatitis in male mice.

Nat Commun

January 2025

NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.

Reactive oxygen species exacerbate nonalcoholic steatohepatitis (NASH) by oxidizing macromolecules; yet how they promote NASH remains poorly understood. Here, we show that peroxidase activity of global hepatic peroxiredoxin (PRDX) is significantly decreased in NASH, and palmitic acid (PA) binds to PRDX1 and inhibits its peroxidase activity. Using three genetic models, we demonstrate that hepatic PRDX1 protects against NASH in male mice.

View Article and Find Full Text PDF

The flavor of dairy products crucially affects consumer purchase preference. Although the flavor and sensory perception of milk can be influenced by heat treatment during processing, the exact mechanism remains unclear. Therefore, this study analyzed the whey protein content and structural changes of milk heated at different time and temperature combinations and evaluated the flavor compounds and sensory characteristics of milk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!