Background: Efferocytosis (ER) refers to the process of phagocytic clearance of programmed dead cells, and studies have shown that it is closely related to tumor immune escape.

Methods: This study was based on a comprehensive analysis of TCGA, GEO and CTRP databases. ER-related genes were collected from previous literature, univariate Cox regression was performed and consistent clustering was performed to categorize lung adenocarcinoma (LUAD) patients into two subgroups. Lasso regression and multivariate Cox regression analyses were used to construct ER-related prognostic features, and multiple immune infiltration algorithms were used to assess the correlation between the extracellular burial-related risk score (ERGRS) and tumor microenvironment (TME). And the key gene HAVCR1 was identified by deep learning, etc. Finally, pan-cancer analysis of the key genes was performed and in vitro experiments were conducted to verify the promotional effect of HAVCR1 on LUAD progression.

Results: A total of 33 ER-related genes associated with the prognosis of LUAD were identified, and the prognostic signature of ERGRS was successfully constructed to predict the overall survival (OS) and treatment response of LUAD patients. The high-risk group was highly enriched in some oncogenic pathways, while the low-ERGRS group was highly enriched in some immune-related pathways. In addition, the high ERGRS group had higher TMB, TNB and TIDE scores and lower immune scores. The low-risk group had better immunotherapeutic response and less likelihood of immune escape. Drug sensitivity analysis revealed that BRD-K92856060, monensin and hexaminolevulinate may be potential therapeutic agents for the high-risk group. And ERGRS was validated in several cohorts. In addition, HAVCR1 is one of the key genes, and knockdown of HAVCR1 in vitro significantly reduced the proliferation, migration and invasion ability of lung adenocarcinoma cells.

Conclusion: Our study developed a novel prognostic signature of efferocytosis-related genes. This prognostic signature accurately predicted survival prognosis as well as treatment outcome in LUAD patients and explored the role of HAVCR1 in lung adenocarcinoma progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585238PMC
http://dx.doi.org/10.1186/s12935-024-03571-3DOI Listing

Publication Analysis

Top Keywords

lung adenocarcinoma
16
luad patients
12
prognostic signature
12
deep learning
8
er-related genes
8
cox regression
8
key genes
8
high-risk group
8
group highly
8
highly enriched
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!