Polycyclic aromatic hydrocarbons (PAH) are semi-volatile, lipophilic, and harmful compounds that can persist for decades in a range of marine environments. There are several marine and soil microorganisms that possess enzymes involved in arene degradation. Here, we analyzed the structure (16S rRNA amplicons) and metabolic potential (inferred using phylogenetic placement) of the bacterial community in surface marine sediments from coastal waters off Concepción, Chile, and describe how microbial community patterns are shaped and altered by PAH contamination. Two depositional zones were identified, a "High PAH" area containing a mix of high and low molecular weight PAH of up to 10,350 ng∑PAH gdw and with high organic matter content; and a "Low PAH" zone mostly characterized by low molecular weight PAH of up to 1810 ng∑PAH gdw and lower levels of organic matter. We identified 53 hydrocarbonoclastic bacteria genera, with eight showing relatively high abundances at High PAH sites, although known PAH degrader clades were also present at Low PAH sites. With potential enzymes inferred in almost all samples, we suggest that breakdown of PAH is widespread in this area, likely resulting from the long history of local PAH emissions that may have promoted a stored microbial capacity for these degradation processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585583 | PMC |
http://dx.doi.org/10.1038/s41598-024-78905-2 | DOI Listing |
J Hazard Mater
December 2024
School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China. Electronic address:
Indoor dust can adsorb various pollutants and long-term deposition can significantly impact air quality and human health. This study investigated the occurrence, source apportionment, and health risks associated with polycyclic aromatic hydrocarbons (PAHs) and their derivatives (d-PAHs) in indoor dust, by focusing on residential and public buildings in Nanjing, China. The concentration of 16 PAHs and 27 d-PAHs ranged from 511 to 5472 ng/g and from 422 to 2904 ng/g, with the most abundant compounds being fluoranthene and 1,2-benz[a]anthraquinone, respectively.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China.
The effectiveness of protected areas in mitigating human impacts remains uncertain due to limited in-situ data; however, atmospheric micropollutant deposition in alpine lakes may provide a quantitative approach to evaluate anthropogenic pressures and threats. In this study, the temporal changes of polycyclic aromatic hydrocarbons (PAHs) inside/outside the Siling Co protected area, Tibet were reconstructed. The varying anthropogenic impact history suggested that, unlike the dominance of residential activities (i.
View Article and Find Full Text PDFJ Nucl Med
January 2025
Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China; and
The purpose of this study was to investigate the feasibility of using F-labeled fibroblast activation protein inhibitor (FAPI) PET/CT in assessing the fibrotic remodeling of the pulmonary artery (PA) and the right ventricle (RV) in pulmonary arterial hypertension (PAH). In a rat model of monocrotaline-induced PAH, rats were euthanized at different time points for tissue analysis (fibroblast activation protein immunofluorescence and Masson's trichrome staining) after completing F-FAPI PET/CT and hemodynamic measurements. Thirty-eight PAH patients were enrolled to participate in F-FAPI PET/CT imaging, with right heart catheterization and echocardiography performed within 1 wk to assess pulmonary hemodynamics and cardiac function.
View Article and Find Full Text PDFJ Food Drug Anal
December 2024
Division of Research and Analysis, Taiwan Food and Drug Administration, Ministry of Health and Welfare, No.161-2, Kunyang St, Nangang District, Taipei City 11561, Taiwan, R.O.C.
Polycyclic aromatic hydrocarbons (PAHs) are primarily generated through the incomplete combustion or pyrolysis of organic materials in various industrial processes. Foods may become contaminated with environmental PAHs found in air, soil, or water, or through industrial food processing methods such as smoking, roasting, drying, and grilling. The Ministry of Health and Welfare in Taiwan has established maximum levels for benzo[a]pyrene (BaP) and indicative values for BaP as well as PAH4 (the sum of benz[a]anthracene, chrysene, benzo[b]fluoranthene, and benzo[a]pyrene) in foods as operational guidelines.
View Article and Find Full Text PDFPulmonary artery (PA) flow analysis is crucial for understanding the progression of pulmonary hypertension (PH). We hypothesized that PA flow characteristics vary according to PH etiology. In this study, we used 4D flow cardiovascular magnetic resonance imaging (CMR) to compare PA flow velocity and wall shear stress (WSS) between patients with pulmonary arterial hypertension (PAH) and those with heart failure with preserved ejection fraction and pulmonary hypertension (PH-HFpEF).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!