Phenotypic profiling by high throughput microscopy, including Cell Painting, has become a leading tool for screening large sets of perturbations in cellular models. To efficiently analyze this big data, available open-source software requires computational resources usually not available to most laboratories. In addition, the cell-to-cell variation of responses within a population, while collected and analyzed, is usually averaged and unused. We introduce SPACe (Swift Phenotypic Analysis of Cells), an open-source platform for analysis of single-cell image-based morphological profiles produced by Cell Painting. We highlight several advantages of SPACe, including processing speed, accuracy in mechanism of action recognition, reproducibility across biological replicates, applicability to multiple models, sensitivity to variable cell-to-cell responses, and biological interpretability to explain image-based features. We illustrate SPACe in a defined screening campaign of cell metabolism small-molecule inhibitors tested in seven cell lines to highlight the importance of analyzing perturbations across models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585637PMC
http://dx.doi.org/10.1038/s41467-024-54264-4DOI Listing

Publication Analysis

Top Keywords

cell painting
12
cell
5
space
4
space open-source
4
open-source single-cell
4
single-cell analysis
4
analysis cell
4
painting data
4
data phenotypic
4
phenotypic profiling
4

Similar Publications

Pyroptosis mediated by gasdermins (GSDMs) plays crucial roles in infection and inflammation. Pyroptosis triggers the release of inflammatory molecules, including damage-associated molecular patterns (DAMPs). However, the consequences of pyroptosis-especially beyond interleukin (IL)-1 cytokines and DAMPs-that govern inflammation are poorly defined.

View Article and Find Full Text PDF

Phenomics-based Discovery of Novel Orthosteric Choline Kinase Inhibitors.

Angew Chem Int Ed Engl

December 2024

University of Oxford, Nuffield Department of Medicine, Centre for Medicines Discovery, NDM Research Building, Roosevelt Drive, OX3 7FZ, Oxford, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Article Synopsis
  • CHKA is a key player in cell metabolism and is linked to cancer and immune function, but developing effective inhibitors has been challenging.
  • Researchers discovered that CHKA is an off-target for specific inhibitors, which helps clarify previous inconsistencies in related studies.
  • Modulating CHKA affects immune responses, particularly B-cell maturation and IgG secretion, indicating its significant role in immune signaling.
View Article and Find Full Text PDF

Ameliorative effects of Ganoderma lucidum (Reishi) on testicular tissue of rats exposed to bisphenol A.

Pol J Vet Sci

September 2024

Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, 23119, Elazığ, Turkey.

Bisphenol A (BPA), an endocrine disrupting chemical, is an environmental toxicant widely used in the production of polycarbonate plastics, epoxy resins and paints. Ganoderma lucidum (GDL) is a plant with biological activities widely used in Chinese medicine. The present study aims to determine the effects of GDL against testicular dysfunction in rats exposed to BPA.

View Article and Find Full Text PDF

Imaging phenotype reveals that disulfirams induce protein insolubility in the mitochondrial matrix.

Sci Rep

December 2024

Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, 422-8526, Shizuoka, Japan.

The cell painting assay is useful for understanding cellular phenotypic changes and drug effects. To identify other aspects of well-known chemicals, we screened 258 compounds with the cell painting assay and focused on a mitochondrial punctate phenotype seen with disulfiram. To elucidate the reason for this punctate phenotype, we looked for clues by examining staining steps and gene knockdown as well as examining protein solubility and comparing cell lines.

View Article and Find Full Text PDF

Convergent data, across species, paint a compelling picture of the critical role of the gut and its resident microbiota in several brain functions and disorders. The chemicals mediating communication along these sophisticated highways of the brain-gut-microbiome (BGM) axis include both microbiota metabolites and classical neurotransmitters. Amongst the latter, GABA is fundamental to brain function where it mediates the majority of neuronal inhibition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!