On-The-Flight trapping, LIBS analysis and discrimination of single meteorite particles generated by laser ablation.

Anal Chim Acta

UMALASERLAB, Departamento de Química Analítica, Universidad de Málaga, C/Jiménez Fraud 4, Malaga, 29010, Spain. Electronic address:

Published: December 2024

Background: Thousands of micrometeorites fall to the Earth on a daily basis. Most of these meteorites have a rocky composition, but others are mainly composed of iron and nickel. Due to their small size, often ca. 100 μm in diameter, the process of searching for, collecting, and identifying these samples is remarkably tedious. In this work, we introduce a minimally invasive methodology for evaluating the full elemental composition of micrometeorites using optical emission spectroscopy of single particles produced by laser ablation of bulk targets.

Results: Bulk meteorite samples were directly ablated within an ablation cell. From few micrograms of ablated matrix, we originated dry aerosols consisting of multielemental particles which were representative of the sample chemistry. SEM images confirmed that the generated particles exhibited spherical geometry. Particles were first optically trapped in air and, then, analyzed by laser-induced breakdown spectroscopy (LIBS). LIBS spectra evidenced compositional differences among samples. For example, Campo de Cielo meteorite featured a high iron content due to its metallic nature whereas LIBS results for Jbilet Winselwan and NWA 869 suggested that pyroxene components dominated the composition of the samples. In contrast, NWA 13739 and Vaca Muerta contained high aluminum intensity, thus indicating that the feldspathic component was dominant, as then verified by XRD. The intra-sample compositional variability were quite satisfactory, as revealed by the RSD data, below 45 %. For quantitative analysis, the percentages of FeO, SiO, AlO, NaO, MgO, TiO, CaO, KO, MnO, SrO, CrO, and LiO were calculated using CF-LIBS.

Significance: This work demonstrates the applicability of laser excitation of individual particles in an optical trap for the multielemental analysis of meteorites. The methodology provides a complete overview of the samples, is capable of classificating them according to their main phases and yield preliminary quantitative information about those phases. Therefore, we present a minimally destructive pathway to be used as the first step in the inspection of these delicate samples. If the particles represent nanostructures inherent to the meteorites, it would constitute a major step in the analysis of extraterrestrial material that may provide fundamental insights into the structure and composition of the original materials at the microscale, a topic that remains an active area of research worldwide.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2024.343361DOI Listing

Publication Analysis

Top Keywords

laser ablation
8
particles
7
samples
6
on-the-flight trapping
4
libs
4
trapping libs
4
analysis
4
libs analysis
4
analysis discrimination
4
discrimination single
4

Similar Publications

Carbon dots (CDs) are versatile nanomaterials that are considered ideal for application in bioimaging, drug delivery, sensing, and optoelectronics owing to their excellent photoluminescence, biocompatibility, and chemical stability features. Nitrogen doping enhances the fluorescence of CDs, alters their electronic properties, and improves their functional versatility. N-doped CDs can be synthesized via solvothermal treatment of carbon sources with nitrogen-rich precursors; however, systematic investigations of their synthesis mechanisms have been rarely reported.

View Article and Find Full Text PDF

Our current prospective cross-sectional study aimed to investigate the effect of anti-vascular endothelial growth factor (VEGF) drugs used in the treatment of retinopathy of prematurity on retinal maturation and persistent avascular retina (PAR). Retinal imaging was performed with Optos confocal laser ophthalmoscopy for 100 patients aged 4 to 8 years who were screened and treated for retinopathy of prematurity (ROP) during the neonatal period. The ROP examination findings (stage and zone) and treatment history (age in weeks at time of treatment and anti-VEGF drug used) from the neonatal period were reviewed.

View Article and Find Full Text PDF

Introduction: Available therapies for peripheral nerve injury (PNI) include surgical and non-surgical treatments. Surgical treatment includes neurorrhaphy, grafting (allografts and autografts) and tissue-engineered grafting (artificial nerve guide conduits), while non-surgical treatment methods include electrical stimulation, magnetic stimulation, laser phototherapy and administration of nerve growth factors. However, the treatments currently available to best manage the different PNI manifestations remain undetermined.

View Article and Find Full Text PDF

Electromagnetic Radiation and Biophoton Emission in Neuronal Communication and Neurodegenerative Diseases.

Prog Biophys Mol Biol

December 2024

Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul 34820 Turkey. Electronic address:

The intersection of electromagnetic radiation and neuronal communication, focusing on the potential role of biophoton emission in brain function and neurodegenerative diseases is an emerging research area. Traditionally, it is believed that neurons encode and communicate information via electrochemical impulses, generating electromagnetic fields detectable by EEG and MEG. Recent discoveries indicate that neurons may also emit biophotons, suggesting an additional communication channel alongside the regular synaptic interactions.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disease that is significantly characterized by cognitive and memory impairments, which worsen significantly with age. In the late stages of AD, metal ion disorders and an imbalance of reactive oxygen species (ROS) levels occur in the brain microenvironment, which causes abnormal aggregation of β-amyloid (Aβ), leading to a significant worsening of the AD symptoms. Therefore, we designed a composite nanomaterial of macrophage membranes-encapsulated Prussian blue nanoparticles (PB NPs/MM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!