A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Critical assessment of purification processes for the robust production of polymeric nanomedicine. | LitMetric

Polymeric nanoparticles are among the most widely used nanocarriers for delivering therapeutic molecules. However, their synthesis processes often generate undesirable impurities that could be toxic and challenging to eliminate. In this study, we compared three purification techniques - centrifugation, dialysis, and tangential flow filtration (TFF) - to evaluate their efficacy in removing residual drug, surfactant, and solvent while preserving the nanoparticles' physicochemical features (hydrodynamic size, zeta potential, polydispersity index). Centrifugation excels in eliminating unencapsulated drug and residual surfactant but significantly affects the nanoparticles' physicochemical properties, such as colloidal stability and size homogeneity. On the other hand, dialysis is a gentler technique effective in removing residual solvent but less so for residual surfactant and unencapsulated drug. TFF emerges as a balanced approach, offering a compromise between the two but none of these techniques achieves satisfactory purification at lab-scale alone. While each technique has its merits, none can meet all requirements independently. The optimal purification strategy often involves a combination of techniques, determined on a case-by-case basis considering factors like purity levels, time, costs, and the preservation of critical properties such as drug loading and colloidal stability. This study underscores the need for a nuanced approach in selecting purification strategies for polymeric nanoparticles in drug delivery applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2024.124975DOI Listing

Publication Analysis

Top Keywords

polymeric nanoparticles
8
removing residual
8
nanoparticles' physicochemical
8
unencapsulated drug
8
residual surfactant
8
colloidal stability
8
purification
5
drug
5
critical assessment
4
assessment purification
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!