With the steady advance of in-silico biological experimentation, model construction and simulation becomes a ubiquitous tool to understand and predict the behaviour of many biological systems. However, biological processes may contain components from different types of reaction networks, resulting in models with different (e.g., slow and fast) timescales. Hybrid simulation is one approach which can be employed to efficiently execute multi-timescale models. In this paper, we present a methodology and workflow utilizing (coloured) hybrid Petri nets to construct smaller and more complicated hybrid models. The presented workflow integrates algorithms and ideas from hybrid simulation of biochemical reaction networks as well as Petri nets. We also construct multi-timescale hybrid models and then show how these models can be efficiently executed using three different advanced hybrid simulation algorithms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biosystems.2024.105365 | DOI Listing |
Sci Rep
January 2025
Business School, Sichuan University, 610059, Chengdu, China.
The comprehensive benefit evaluation of LID based on multi-criteria decision-making methods faces technical issues such as the uncertainties and vagueness in hybrid information sources, which can affect the overall evaluation results and ranking of alternatives. This study introduces a multi-indicator fuzzy comprehensive benefit evaluation approach for the selection of LID measures, aiming to provide a robust and holistic framework for evaluating their benefits at the community level. The proposed methodology integrates quantitative environmental and economic indicators with qualitative social benefit indicators, combining the use of the Storm Water Management Model (SWMM) and ArcGIS for scenario-based analysis, and the use of hesitant fuzzy language sets and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) for decision-making.
View Article and Find Full Text PDFNat Commun
January 2025
School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.
Interlayer coupling in 2D heterostructures can result in a reduction of the rotation symmetry and the generation of quantum phenomena. Although these effects have been demonstrated in transition metal dichalcogenides (TMDs) with mismatched interfaces, the role of band hybridization remains unclear. In addition, the creation of flat bands at the valence band maximum (VBM) of TMDs is still an open challenge.
View Article and Find Full Text PDFComput Biol Chem
January 2025
D3 Drug Tech Lab Pvt Ltd, Chennai, Tamilnadu, India.
Lung cancer is the leading cause of mortality in both men and women due to genetic and epigenetic modifications. Our study focuses on fabricating phenmiazine ring leads by a functional group-based drug design to inhibit p53 -7A1W and MDM2-7AU9 proteins responsible for cancer cell growth. One hundred molecules are designed and allowed to bind inside the active site of 7A1W and 7AU9 protein using a glide dock platform and subjected to find MMGBSA.
View Article and Find Full Text PDFAdv Colloid Interface Sci
January 2025
Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Biocity (3rd fl.), Tykistökatu 6A, 20520 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Biocity (5th fl.), Tykistökatu 6A, 20520 Turku, Finland. Electronic address:
In the realm of hybrid nanomaterials, the construction of core/shell nanoparticles offer an effective strategy for encompassing a particle by a polymeric or other suitable material, leading to a nanocomposite with distinct features within its structure. The polymer shell can be formed via nanoprecipitation, optimized by manipulating fluid flow, fluid mixing, modulating device features in microfluidics. In addition to the process optimization, success of polymer assembly in encapsulation strongly lies upon the favorable molecular interactions originating from the diverse chemical environment shared between core and shell materials facilitating formation of core/shell nanostructure.
View Article and Find Full Text PDFJ Biol Dyn
December 2025
Modelling and Simulation Research Group, School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia.
Human papillomavirus (HPV) infection is the most common sexually transmitted infection in the world. Persistent oncogenic HPV infection has been a leading threat to global health and can lead to serious complications such as cervical cancer. Prevention interventions including vaccination and screening have been proven effective in reducing the risk of HPV-related diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!