Genome engineering is extensively utilized in diverse scientific disciplines, advancing human welfare and addressing various challenges. Numerous genome engineering tools have been developed to modify genomic sequences. Among these, the CRISPR-Cas system has transformed the field and remains the most commonly employed genome-editing tool. However, the CRISPR-Cas system relies on induced double-strand breaks, with editing efficiency often limited by factors such as cell type and homologous recombination, impeding further progress. CRISPR-associated transposons (CASTs) represent programmable mobile genetic elements. CASTs identified as active were developed as CAST systems, which can perform RNA-guided DNA integration and are featured by high precision, programmability, and kilobase-level payload capacity. Moreover, CAST system allows for precise genome modifications independent of host DNA repair mechanisms, addressing the constraints of conventional CRISPR-Cas systems. It expands the genome engineering toolkit and is poised to become a representative of next-generation genome editing tools. This review thoroughly examines the research progress on CASTs, highlighting the current challenges faced in genome engineering based on CASTs, and offering insights into the ongoing development of this transformative technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biotechadv.2024.108481 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!