The high-affinity pineapple sucrose transporter AcSUT1B, regulated by AcCBF1, exhibited enhanced cold tolerance in transgenic Arabidopsis.

Int J Biol Macromol

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Published: December 2024

AI Article Synopsis

  • The study identifies four sucrose transporter genes (AcSUTs) in pineapple, highlighting their roles in plant growth and response to cold stress.
  • Two specific transporters (AcSUT1A and AcSUT1B) were shown to effectively transport glucosides and had a strong affinity for sucrose, indicating their importance in nutrient uptake.
  • The research revealed that overexpressing AcSUT1B enhanced cold tolerance in transgenic Arabidopsis and established a link between the AcCBF1 protein and the activation of AcSUT1B under cold conditions, advancing our understanding of cold response mechanisms in pineapple.

Article Abstract

Sucrose transporter (SUT) plays essential roles in plant growth and development, as well as responses to diverse abiotic stresses. However, limited information about the function of SUT was available in pineapple, an important tropical fruit crop with crassulacean acid metabolism. Here, four AcSUT genes were identified in pineapple genome, and divided into three clades according to the phylogenetic analysis. The expression profiles of AcSUTs were systemically examined, and they were all localized to plasma membrane. Transport activity assay by two-electrode voltage clamp of Xenopus oocytes showed that AcSUT1A and AcSUT1B were capable of transporting a range of glucosides, and they were exhibited high affinity for sucrose with Km value of 0.09 mM and 0.41 mM at pH 5.0, respectively. Overexpression of the cold-induced AcSUT1B conferred enhanced cold tolerance in transgenic Arabidopsis. DNA-protein interaction analysis further demonstrated that AcCBF1 directly binds the CRT/DRE element of the AcSUT1B promoter and activated its expression. Heterologous expression of AcCBF1 in Arabidopsis also increased cold tolerance. In this study, we investigated the transport activities of AcSUTs in pineapple and identified the AcCBF1-AcSUT1B module involved in cold stress, which provided new insights into the molecular mechanism of the cold response in pineapple.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.137952DOI Listing

Publication Analysis

Top Keywords

cold tolerance
12
sucrose transporter
8
enhanced cold
8
tolerance transgenic
8
transgenic arabidopsis
8
cold
5
high-affinity pineapple
4
pineapple sucrose
4
acsut1b
4
transporter acsut1b
4

Similar Publications

Dysregulation of GABAergic inhibition is associated with pathological pain. Consequently, enhancement of GABAergic transmission represents a potential analgesic strategy. However, therapeutic potential of current GABA agonists and modulators is limited by unwanted side effects.

View Article and Find Full Text PDF

Transcriptional regulation of miR528-PPO module by miR156 targeted SPLs orchestrates chilling response in banana.

Mol Hortic

January 2025

Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.

Banana is sensitive to cold stress and often suffers from chilling injury with browning peel and failure to normal ripening. We have previously reported that banana chilling injury is accompanied by a reduction of miR528 accumulation, alleviating the degradation of its target gene MaPPO and raising ROS levels that cause peel browning. Here, we further revealed that the miR528-MaPPO cold-responsive module was regulated by miR156-targeted SPL transcription factors, and the miR156c-MaSPL4 module was also responsive to cold stress in banana.

View Article and Find Full Text PDF

Background: Calmodulin-binding transcription activator (CAMTA) proteins play significant roles in signal transduction, growth and development, as well as abiotic stress responses, in plants. Understanding their involvement in the low-temperature stress response of teak is vital for revealing cold resistance mechanisms.

Results: Through bioinformatics analysis, the CAMTA gene family in teak was examined, and six CAMTA genes were identified in teak.

View Article and Find Full Text PDF

Pugionium cornutum (L.) Gaertn (P. cornutum) has strong tolerance to drought, salt and disease, but the tolerance mechanisms for such stresses in P.

View Article and Find Full Text PDF

Effects of exogenous calcium pretreatment on the cold resistance of Phoebe zhennan seedlings.

Plant Physiol Biochem

December 2024

School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, PR China. Electronic address:

Phoebe zhennan is a high-quality timber tree species mainly distributed in the subtropical regions of China. It is very important to study and improve the cold resistance of P. zhennan from the mechanism and practice for expanding its introduction and cultivation range.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!