Covalent grafting of reactive phytate salt for durable flame-retardant functionalization of protein silk fabric.

Int J Biol Macromol

Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), College of Textile and Clothing Engineering, Soochow University, 199 Renai Road, Suzhou 215123, China. Electronic address:

Published: December 2024

The development of sustainable and durable flame-retardant protein silk fabric without compromising its physical properties is of interest but challenging. In this study, a fully biobased reactive flame-retardant, vanillin phytate, was synthesized from biomass phytic acid and vanillin. Subsequently, vanillin phytate was covalently grafted onto silk fabrics along with diethyl phosphite under mild conditions via the Kabachnik-Fields reaction. The chemical structure of vanillin phytate and its potential cross-linking mechanism with silk fibers, thermal stability, combustion behavior, flame retardancy, washing durability, and mode of action of the modified silk fabrics were investigated. The modified silk exhibited a significant reduction in heat and smoke release by 63.8 % and 90 %, respectively, versus pristine silk. The modified silk fabrics also demonstrated excellent self-extinguishing capacity, with a reduced damaged length of 7.0 cm and an increased limiting oxygen index of over 34 %. Furthermore, the modified silk fabric maintained self-extinguishing performance after 25 washing cycles, showing high flame-retardant efficiency and good washing durability. The char residue analyses revealed that the modification primarily exerted its flame-retardant effect in the condensed phase. Interestingly, the present strategy had less influence on the physical performance of silk fabrics, indicating a wide range of practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.137956DOI Listing

Publication Analysis

Top Keywords

silk fabrics
16
modified silk
16
silk fabric
12
vanillin phytate
12
silk
10
durable flame-retardant
8
protein silk
8
washing durability
8
flame-retardant
5
covalent grafting
4

Similar Publications

Flexible Moisture-Driven Electricity Generators Based on Heterogeneous Gels and Carbon Nanotubes.

ACS Appl Mater Interfaces

January 2025

College of Textile and Clothing Engineering, Soochow University, 199 Ren'ai Road, Suzhou 215123, China.

Recently developed asymmetric heterogeneous moisture-driven electricity generators (AHMEGs) are advantageous for harvesting energy from ubiquitous moisture due to their superior output performance and possible flexibility. However, the regeneration of AHMEG has seldom been explored. Here, we report the fabrication of flexible AHMEGs with regeneration ability simply by asymmetrically incorporating carbon nanotubes into a bilayer-structured gel with heterogeneities of both hygroscopicity and charge.

View Article and Find Full Text PDF

: In the quest for sustainable and biocompatible materials, silk fibroin (SF), derived from natural silk, has emerged as a promising candidate for nanoparticle production. This study aimed to fabricate silk fibroin particles (SFPs) using a novel swirl mixer previously presented by our group, evaluating their characteristics and suitability for drug delivery applications, including magnetic nanoparticles and dual-drug encapsulation with curcumin (CUR) and 5-fluorouracil (5-FU). : SFPs were fabricated via microfluidics-assisted desolvation using a swirl mixer, ensuring precise mixing kinetics.

View Article and Find Full Text PDF

Silk fibroin, known for its biocompatibility and biodegradability, holds significant promise for biomedical applications, particularly in drug delivery systems. The precise fabrication of silk fibroin particles, specifically those ranging from tens of nanometres to hundreds of microns, is critical for these uses. This study introduces elliptical vibration micro-turning as a method for producing silk fibroin particles in the form of cutting chips to serve as carriers for drug delivery systems.

View Article and Find Full Text PDF

In recent years, several studies have focused on the development of sustainable, biocompatible, and biodegradable films with potential applications in wound healing and wound dressing systems. Natural macromolecules, particularly proteins, have emerged as attractive alternatives to synthetic polymers due to their biocompatibility, biodegradability, low immunogenicity, and adaptability. Among these proteins, keratin, extracted from waste wool, and fibroin, derived from cocoons, exhibit exceptional properties such as mechanical strength, cell adhesion capabilities, and suitability for various fabrication methods.

View Article and Find Full Text PDF

Evaluation of Sericin/Polyvinyl Alcohol Mixtures for Developing Porous and Stable Structures.

Biomimetics (Basel)

January 2025

Agroindustrial Research Group, Department of Chemical Engineering, Universidad Pontificia Bolivariana, Cq. 1 #70-01, Medellín 050031, Colombia.

Fibrous by-products, including defective or double cocoons, are obtained during silk processing. These cocoons primarily contain fibroin and sericin (SS) proteins along with minor amounts of wax and mineral salts. In conventional textile processes, SS is removed in the production of smooth, lustrous silk threads, and is typically discarded.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!