Bacterial nanocellulose (BNC) produced from sorbitol as a sustainable nano-filter for oil-water separation.

Int J Biol Macromol

NCIM-Resource Center, Biochemical Science Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Published: January 2025

Oil spillage is one of the serious problems for sustainable environment. Bacterial nanocellulose (BNC), a hydrophilic and highly porous material holds a promising material for oil-water separation from contaminants. In the present work, a hydrophilic BNC produced from a sorbitol as the carbon source demonstrated the unique porous symmetrical arrangement having an oleophilic property. The BNC membrane obtained showed the highest water holding capacity (WHC) of ≈147 gg . The Brunauer-Emmett-Teller (BET) analysis of BNC revealed the unique characteristics of isothermic patterns, having macro sized pores with diameter of 121.3 nm and surface area of 40.6m/g, which plays a vital role in separation of oil from water by allowing passage of only water through it. The separation efficiency of BNC membrane produced after 5th day of incubation has showed 99.0 % oil removal compared to 10 and 15th day incubated BNC membranes. a CFD model to investigate the possibilities of BNC membranes and clarify the dynamics of oil-water separation. The nanostructured network of BNC offers a tortuous path for oil molecules while allowing rapid permeation of water, leading to high separation selectivity and flux. Although BNC has been previously studied for oil water separation, this study provides new insights into the use of wet BNC membranes into its pristine state with sorbitol as carbon source for this application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.137953DOI Listing

Publication Analysis

Top Keywords

oil-water separation
12
bnc membranes
12
bnc
11
bacterial nanocellulose
8
nanocellulose bnc
8
bnc produced
8
produced sorbitol
8
separation oil
8
sorbitol carbon
8
carbon source
8

Similar Publications

The development of affordable ceramic membranes is essential for reducing expenses and optimizing the treatment of oily wastewater. There is an urgent demand for membranes that are not only affordable and easy to operate but also stable and capable of managing high fluxes to address the increasing volumes of oily wastewater. The significant production demands associated with many commercially available ceramic membranes, primarily due to the use of specialised raw materials and intricate processing methods, limiting their suitability for many wastewater treatment applications.

View Article and Find Full Text PDF

A self-healing superhydrophobic coating was successfully prepared in the present work. The coating comprised PEG (polyethylene glycol) and FeO nanoparticles modified with stearic acid (SA) via hydrogen bonds, using polyamide resin and epoxy as binders. The chemically damaged surface could restore its original superhydrophobic structure and chemical composition after 4 h at room temperature or 10 min of heating in an oven with a self-healing efficiency of 95.

View Article and Find Full Text PDF

This study introduces a UiO-66-NH2/Tannic acid/Polyvinylidene fluoride (UTP) composite membrane for efficient oil-water separation. Pristine polyvinylidene fluoride (PVDF) membranes, due to their hydrophobic nature, tend to foul during oil-in-water emulsion separation. By incorporating the metal-organic framework (MOF) UiO-66-NH2 and stabilizing it with tannic acid (TA) and polyvinyl alcohol (PVA), the membrane's hydrophilicity and antifouling properties were significantly enhanced.

View Article and Find Full Text PDF

Hydrophobic materials have been fabricated by DLP vat photopolymerization of isobornyl acrylate-based resins with chemical modification and/or surface geometry engineering. Fluorinated and polydimethylsiloxane (PDMS)-based acrylic monomers are used for chemical modification and are incorporated into the printed materials. The water wettability was significantly reduced and plateaued with as low as 5% (w/w) of the auxillary hydrophobic monomer.

View Article and Find Full Text PDF

Oil-water separation materials with specialized wettability have garnered significant attention in the field of oil-water separation due to the advantages of simple use and no secondary pollution. However, the adsorptive contamination of the filter surface by impurity phases and surfactants can cause a shift in the wettability of the filter surface. For efficient oil-water separation and improved resistance to adherent contamination on the oil-water separation membrane surface, herein, superwetted Cu nanofilms and smooth hydrophobic surfaces were prepared on SSM substrates by one-step electrodeposition and immersion methods, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!