The plant transcriptome varies between combined stresses and single stresses, and is regulated differentially by transcription factors. Therefore, understanding the complexities of plant interactions with pathogens in stressed soils is always a challenge. In chickpea, 197 CabHLH genes were newly identified. Expression of 28 defense-associated CabHLHs [individual and combined stresses of Fusarium oxysporum f. sp. ciceris (Foc) and salt (NaCl) in three chickpea cultivars (JG-315: wilt resistant, JG-36: wilt tolerant, and JG-62: wilt susceptible) in Trichoderma asperellum T42 primed and non-primed conditions] revealed upregulation of most CabHLHs at 12 h post-stress in individual stresses but decreased significantly in the combined stress (Foc and salt). However, T42 priming stimulated the transcript accumulation of most CabHLHs even earlier (6 h). Three genes (CabHLH119, 158, and 184 carrying an additional domain bHLH-MYC_N) and two additional genes (CabHLH69 and 172) belonging to the subfamilies IIIde and IIIf were upregulated significantly in all three cultivars under individual and combined stresses, and upregulated further when primed with T42. Expression of the three bHLH-MYC_N domain containing genes, and defense activities (PAL, PO activities, phenylpropanoid accumulation) in the combined stress correlated very strongly. Protein-protein interactome studies further strengthened the claim that the three bHLH-MYC_N domain carrying CabHLHs, is likely to regulate the defense signaling in chickpea under stress as they could form complexes either directly or indirectly with cis-elements of promoters of some important defense genes. The results thus showed the significance of the IIIde and IIIf subfamily genes, particularly those carrying the bHLH-MYC_N domain, in mitigating combined stresses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2024.109314 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!