Dual regulation of As release and soil environment by Fe(Ⅱ) assisted steel slag and coal fly ash: Effects and potential mechanisms.

J Hazard Mater

School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of the Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, China.

Published: November 2024

Multiple solid waste-based amendments are used for arsenic (As)-contaminated soil remediation, but their mechanisms in inhibiting As release and the effects on soil health in real sites remain poorly understood. Here, an amendment consisting of steel slag (SS), coal fly ash (CFA) and Fe(Ⅱ), namely, Fe(Ⅱ) assisted SS and CFA, was applied to an As-contaminated mining soil. 120 days field experimental results revealed that amendment addition in low-As soil (LA soil) and high-As soil (HA soil) significantly increased amorphous Fe(Ⅲ) (hydro)oxides content and decreased dissolved organic carbon (DOC), and thus inhibited As mobilization. More importantly, the soil microbial community activity was improved in HA soil, while it significantly decreased in LA soil. Correlation analyses demonstrated that the activation of fungal and bacterial communities was directly correlated with soil pH, amorphous Fe(Ⅲ) (hydro)oxides, soil organic matter (SOM), and DOC. The C-containing functional groups, newly generated Fe(Ⅲ) (hydro)oxides and Fe-As-SOM complexes inhibit As release, while the Fe(Ⅲ) reduction drove the As release. This work highlighted the importance of Fe(Ⅱ) assisted SS and CFA in inhibiting As release and regulating soil microbial communities, providing a new strategy for the remediation of heavy metals contaminated mining soil using solid waste-based amendment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.136599DOI Listing

Publication Analysis

Top Keywords

soil
15
feⅡ assisted
12
feⅢ hydrooxides
12
steel slag
8
slag coal
8
coal fly
8
fly ash
8
solid waste-based
8
inhibiting release
8
assisted cfa
8

Similar Publications

Codon bias, nucleotide selection, and genome size predict in situ bacterial growth rate and transcription in rewetted soil.

Proc Natl Acad Sci U S A

January 2025

Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550.

In soils, the first rain after a prolonged dry period represents a major pulse event impacting soil microbial community function, yet we lack a full understanding of the genomic traits associated with the microbial response to rewetting. Genomic traits such as codon usage bias and genome size have been linked to bacterial growth in soils-however, often through measurements in culture. Here, we used metagenome-assembled genomes (MAGs) with O-water stable isotope probing and metatranscriptomics to track genomic traits associated with growth and transcription of soil microorganisms over one week following rewetting of a grassland soil.

View Article and Find Full Text PDF

Arctic soil carbon insulation averts large spring cooling from surface-atmosphere feedbacks.

Proc Natl Acad Sci U S A

January 2025

Laboratoire de Géologie, Ecole Normale Supérieure, CNRS, Institut Pierre-Simon Laplace, Université Paris Sciences et Lettres, Paris 75005, France.

The insulative properties of soil organic carbon (SOC) and surface organic layers (moss, lichens, litter) regulate surface-atmosphere energy exchanges in the Arctic through a coupling with soil temperatures. However, a physical description of this process is lacking in many climate models, potentially biasing their high-latitude climate predictions. Using a coupled surface-atmosphere model, we identified a strong feedback loop between soil insulation, surface air temperature, and snowfall.

View Article and Find Full Text PDF

Background: Coccidioidomycosis, caused by inhalation of spp. spores, is an emerging infectious disease that is increasing in incidence throughout the southwestern US. The pathogen is soil-dwelling, and spore dispersal and human exposure are thought to co-occur with airborne mineral dust exposures, yet fundamental exposure-response relationships have not been conclusively estimated.

View Article and Find Full Text PDF

Human exposure to mycotoxins is common and often severe in underregulated maize-based food systems. This study explored how monitoring of these systems could help to identify when and where outbreaks occur and inform potential mitigation efforts. Within a maize smallholder system in Kongwa District, Tanzania, we performed two food surveys of mycotoxin contamination at local grain mills, documenting high levels of aflatoxins and fumonisins in maize destined for human consumption.

View Article and Find Full Text PDF

An analytical study of active earth pressure in cohesive soil considering interlayer shear stress.

PLoS One

January 2025

Ltd Project Construction Management Company, Jiangxi Provincial Communications Investment Group Co., Nanchang, China.

The impact of interlayer shear stress on the distribution of earth pressure in cohesive soil is notable, but currently, there lacks a comprehensive theory that integrates this factor in the calculation of active earth pressure. Drawing from the Mohr stress circle specific to clay soils, a formula to calculate interlayer shear stress has been derived. Moreover, a robust model has been formulated to compute the active earth pressure in clay soils, incorporating elements such as interlayer shear stress, effects of displacement, soil arching, and the morphology of the sliding surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!